
Last Update
October 20, 2000

Converting genomic GFF-format annotations on PostScript p lots.

Copyright c
 1999 - Josep Francesc Abril Ferrando y
& Roderic Guigó Serra

This program is free software; you can redistribute it and/o r
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public Lice nse
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.y Current address:

INSTITUT MUNICIPAL D’INVESTIGACIÓ MÈDICA
GENOME INFORMATICS GROUP
C/ Dr. Aiguader 80
08003 - Barcelona (SPAIN)
Phone: +34 93 221 10 09 ext 2016
Fax: +34 93 221 3237

e-mail: jabril@imim.es

I

1 Introduction 1
1.1 Description .. 1
1.2 About this manual .. . 1
1.3 Acknowledgements .. . 1

2 Basic Concepts 3
2.1 GFF philosophy .. 3

2.1.1 GFF Format Definition: . 3
2.1.2 Fields Definition: .. 3

2.2 gff2ps philosophy . 6

3 Usinggff2ps 10
3.1 Installation tips 10
3.2 Usinggff2ps on command-line . 12

3.2.1 Generation of report files 13
3.2.2 Command-line help .14

3.3 Reporting Bugs .. 14

4 Setting Output 16
4.1 Custom File Variables Definition 16

4.1.1 Layout Features .17
4.1.2 GFF-element Features .. 22
4.1.3 Group Features . 23
4.1.4 Source Features .24
4.1.5 Solving conflicts among variables 26

4.2 Custom Files .27
4.2.1 The Block Separator Comment .. . 28
4.2.2 Using Regular Expressions in Custom Files 29

4.3 Command Line Options .. . 32

A GFF Feature Table 36

B Reference Guide 38
B.2 Layout Features .. . 39
B.3 GFF-element Features 40
B.4 Group Features .. 41
B.5 Source Features .. . 41
B.1 Shell command-line options forgff2ps. 42

C Options Summary 43

II

2.1 Plot distribution for elements found in GFF records 7
2.2 Group formats read bygff2ps. 8

3.1 Tree directory for gff2ps tarball. 11
3.2 UNIX pipelines andgff2ps. 13

4.1 Writing our first custom file. 28
4.2 Block Separator Comments in Custom Files. 29
4.3 Using regular expressions ongff2ps custom files 31
4.4 Reading options from command-line 32

C.1 Source-tracks vertical alignment. 44

III

2.1 The simplest GFF-format records. 4
2.2 Grouping GFF records. 5
2.3 Some remarks on GFF Standard Format Version 2. 6

3.1 Unix Systems where has been testedgff2ps . 15

4.1 Describing Regular Expressions 30
4.2 Working with Regular Expressions, some examples. 31

A.1 Summary of DDBJ/EMBL/GenBank feature keys. 36

B.2 Layout Features definition. 39
B.3 GFF-element Features definition. 40
B.4 Group Features definition. 41
B.5 Source Features definition. 41
B.1 Shell command-line options forgff2ps. 42

C.1 Available shape names. 43
C.2 Available baseline alignment. 44
C.3 Available line-types. 45
C.4 Available fill-shape modes 45
C.5 Available fill-vector modes 45
C.6 gff2ps CMYK color definition table and Color Names.46
C.7 Page Sizes defined ingff2ps. 47

IV

1.1 Description

gff2ps is a script program developed with the aim of converting gff-formated records into high
quality one-dimensional plots in PostScript. Such plots may be useful for comparing genomic
structures and to visualizing outputs from genome annotation programs. One of our goals is to write
a program ready to handle the increasing amount of genomic information that is being obtained from
genomic sequencing projects. Another important feature isthat we have tried to separate record data
from drawing features related to that data, avoiding to increase the complexity of gff-files with those
drawing properties we will like to define for —such as featurecolor and so on—.

The program is not interactive as a Java applet and neither has a graphic user interface, we may
add a more friendly interface in future developments. The main procedure must work basically as
a filter which allows users to include our program within a command-line UNIX pipe. PostScript
output can be displayed with ghostview or xpsview, althoughwe often use the former, or sent
directly to PostScript printing device (or other printers if you have the proper filters defined on your
system), and can be included so easily into a LATEX document too.

We hope that this program will be of usefulness in your analysis on genomic sequences.

1.2 About this manual

We wrote this manual having three blocks in mind: what is behind the code, how to work with it
in a UNIX system, and how you can improve your plots using built-in variables. All three are very
related among the others, because the input you are providing must fit a format, which is expected
by the program, but modified by your choice in the custom file, and you must know how it is affected
by command-line options, and so on. That’s the reason why we suggest to read all three chapters in
the same order that they appear, this will save you to spend time trying to solve an error that if you
take care of our explanations perhaps it will not appeared.

The final appendices may help you as a reference guide when youstart working withgff2ps.
They summarize suggested GFF features, program options —and available parameters for those—,
and command-line options.

POSTSCRIPT is a registered trademark of Adobe Systems Incorporated. UNIX is a trademark of
AT&T/Bell Laboratories. LATEX(by L.Lamport), LINUX (by L.Torwald),awk andbash (by GNU),
gv (by J.Plass & T.O.Theisen),GhostView (by T.Theisen),Ghostscript (by Alladdin Enterprises),
andgff2ps are all free software under GNU-GPL.

1.3 Acknowledgements

gff2ps was used to visualize the genomic data-sets submitted to ISMB’99 Tutorial “The chal-
lenge of annotating a complete eukaryotic genome: A case study in Drosophila melanogaster”. We
thank the opportunity given by Martin Reese and Michael Ashburner from the Berkeley Drosophila
Genome Project. We appreciate the ISMB’99 organizing committee help very much for allowing
us to show the three panels poster for the whole meeting.

We thank to Richard Bruskiewich, from Sanger Center and GFF-Specs Web Page curator, his

1

helpful tips and comments on GFF-format. Also we thank to those people that have bet on GFF
as data interchange format and those who have participated on the GFF mailing-list. We hope that
GFF mailing-list will provide us a reference for GFF standard for a long time.

Finally thank to Moisés Burset, Genís Parra, Sergi Castellano and Enrique Blanco for their sug-
gestions and their effort testing this program.

This work was supported by:� Proyecto del Plan Nacional de I+D, BIO98-0443-C02-01, fromthe Ministerio de Educación
y Ciencia (Spain).� Beca de Formación en Investigación, BEFI 99/9345, from the Instituto de Salud Carlos III
(Spain).

2

In this chapter we want to introduce you in GFF format definition as well as howgff2ps handles
your GFF files. The main goal is that you will learn how “standard” GFF files that will run without
problems to get nice plots are defined; you must know thatgff2ps, when is checking input records,
rejects all non “standard” GFF records (warning users on that, of course).

2.1 GFF philosophy

GFF Protocol Specification was initially proposed by Richard Durbin and David Haussler with
amendments proposed by Lincoln Stein, Suzana Lewis, AndersKrogh and others. The GFF Speci-
fication is nowadays maintained at the Sanger Center by Richard Bruskievich1.

We have developedgff2ps underGFF Version 1andGFF Version 2specifications, here we
are going to summarize the basic aspects for it. You can obtain a more complete definition at Sanger
Center GFF format page at:

http://www.sanger.ac.uk/Software/GFF/gff.shtml

and the full specs at:
http://www.sanger.ac.uk/Software/GFF/GFF_Spec.shtml

There is a mailing list to which you can send comments, enquiries, complaints, etc. . . about GFF.
To be added to the mailing list you have to send a mail toMajordomo@sanger.ac.ukwith the
following command in the body of your email message:subscribe gff-list

2.1.1 GFF Format Definition:

GFF —General Feature Format (formerly called ’Gene Feature Finding’)— is a format specifica-
tion for describing genes and other features associated with genomic sequences and the transfer of
feature information. A GFF record is an extension of a basic (name,start,end) tuple (or "NSE")
that can be used to identify a substring of a biological sequence. (For example, the NSE (Chromo-
someI,2000,3000) specifies the third kilobase of the sequence named "ChromosomeI"). Filename
extension for GFF format has been defined as ‘.gff’.

GFF format is not conceived to be used for complete data management of the analysis and
annotation of genomic sequences, there are other much powerful systems developed for that (as
Acedb, Genotator, . . .). This format is intended to be easy toparse and process by a variety of
programs in different languages —i.e. Unix tools like grep,sort and simple perl and awk scripts—.
So, GFF format has a record-based structure, where each feature is described on a single line, and
line order is not relevant. In Version 2, all the fields of every single record must be separated by
TAB characters (‘nt’), revoking previous permissions to use arbitrary whitespaces as field delimiters.
Table 2.1 placed below, shows some simple example records.

2.1.2 Fields Definition:

Fields are:
1rbsk@sanger.ac.uk

3

Table 2.1: The simplest GFF-format records.

SEQ1 netgene splice5 172 173 0.94 + .
SEQ1 genie sp5-20 163 182 2.3 + .
SEQ1 genie sp5-10 168 177 2.1 + .
SEQ2 grail ATG 17 19 2.1 - 0
SEQ1 EMBL atg 103 105 . + 0 labl #
SEQ1 EMBL exon 103 172 . + 0 labl #
SEQ1 EMBL splice5 172 173 . + . . #<seqname> <source><feature> <start><end> <score><strand><frame> [group] [. . .]<seqname> The name of the sequence. Having an explicit sequence name allows a feature file to

be prepared for a data set of multiple sequences. You can use the identifier of the sequence
in an accompanying file containing the sequence nucleotidesstring, or the identifier for a
sequence in a public database —as EMBL/Genbank/DDBJ accession number—.<source> The source of this feature. This field will normally be used toindicate the program
making the prediction, or if it comes from public database annotation, or is experimentally
verified, etc. . .<feature> The feature type name. As you can use other features, it wouldbe desirable to have a
Standard Table for common features. For this standard tablehas been proposed to fall back
on the international public standards for genomic databasefeature annotation, specifically,
the DDBJ/EMBL/GenBank feature table2. Some of the most used terms in genomics from
that table are summarized at Appendix A.<start>, <end> Integers.<start> must be less than or equal to<end>, so reverse strand coor-
dinates must be defined in forward coords. In GFF Version 1 sequence numbering starts at
1, so these numbers should be between 1 and the length of the relevant sequence, inclusive.
Version 2 condones values of<start> and<end> that extend outside the reference sequence.<score> A floating point value. When there is no score you should use ‘.’.<strand> One of ‘+’, ‘-’ or ‘.’. ‘.’ should be used when strand is not relevant.<frame> One of ‘0’, ‘1’, ‘2’ or ‘.’. ‘0’ indicates that the specified region is in frame, i.e. that its
first base corresponds to the first base of a codon. ‘1’ indicates that there is one extra base,
i.e. that the second base of the region corresponds to the first base of a codon, and ‘2’ means
that the third base of the region is the first base of a codon. Ifthe strand is ‘-’, then the first
base of the region is value of<end>, because the corresponding coding region will run from<end> to<start> on the reverse strand. As with<strand>, if the frame is not relevant then
set<frame> to ‘.’. It has been pointed out that "phase" might be a better descriptor than
"frame" for this field.

[group] An optional string-valued field that can be used as a name to group together a set of records.
Typical uses include to group the introns and exons in one gene prediction (or experimentally

2See the DDBJ/EMBL/GenBank feature key table definition at:
http://www.ebi.ac.uk/embl/Documentation/FT_definitions/feature_table.html

4

verified gene structure). In Version 2, group must be defined within a Tag-Value pair. Tags
must be standard identifiers ([A-Za-z][A-Za-z0-9_]�). Free text values must be quoted within
double quotes. Examples for group field can be found in table 2.2. Standard table for Group
Tag Identifiers has not yet been completely formalized, however a useful constraint is that
they are equivalent, where appropriate, to DDBJ/EMBL/GenBank feature ‘qualifiers’ of given
features3.

Table 2.2: Grouping GFF records.

Simple Group Names (GFF Version 1)

CETBB search cds 2189 2884 . + . 125
rt2202 predict gene 1289 12852 64.07 - . trypsin
MMPROT blast similarity 32727 32740 1.6e-23 + 1 "RNA polymer ases"

Tag-Value Group Names (GFF Version 2)

jj_lk2 finder cds 6718 7051 . - . Transcript "1"
dJ102G20 GD_mRNA exon 7105 7201 . - 2 Sequence "dJ102G20.C1. 1"
seq1 BLASTX similarity 101 235 87.1 + 0 Target "HBA_HUMAN" 11 55

Comments Comments are allowed starting with character ‘#’, everything following ‘#’ until the
end of the line is ignored. Effectively this can be used in twoways: at the beginning of the
line to make the whole line a comment, or the comment could come after all the required
fields on the line.

Meta Information You can define optionally a number of special comment lines for meta infor-
mation at the top of your gff file with ‘##’. Current proposed ‘##’ lines are:

##gff-version {version}
GFF version, current version is 2.

##source-version {source} {version}

You can record program or package version generated the datain this file.

##date {date}

The date the file was made, or perhaps when prediction programs were run. Use of as-
tronomical format is recommended (1997-11-08 for 8th November 1997), first because
this sort properly, and second to avoid any US/European bias.

##DNA {seqname}
##acggctcggattggcgctggatgatagatcagacgac
##...
##end-DNA

To give a DNA sequence. Several people have pointed out that it may be convenient to
include the sequence in the file. It should not become mandatory to do so. Often the
seqname will be a well-known identifier, and the sequence caneasily be retrieved from
a database, or an accompanying file.

3See the EMBL feature and qualifiers description at:
http://www3.ebi.ac.uk/Services/WebFeat/

5

##sequence-region {seqname} {start} {end}

To indicate that this file only contains entries for the specified subregion of a sequence.

Table 2.3: Some remarks on GFF Standard Format Version 2.. Intended to be easy to parse and process.. Field separator must be a TAB character (‘nt’).. Fields must not include whitespace.. <start> must be lower or equal than<end>.. When there is no<score> you should use ‘.’.. When<strand> is not relevant you should use ‘.’.. Available<frames> are ‘.’, ‘0’, ‘1’ and ‘2’.. Tag-Value pairs accepted for<group> field.Æ Group tag must be a standard identifier ([A-Za-z][A-Za-z0-9_]�).Æ Free text values must be quoted within double quotes.

2.2 gff2ps philosophy

The programming philosophy underlyinggff2ps can be summarized onto these points:� We want to generate comprehensive plots of all ‘GFF-able’ features in order to compare
genomic sequences from different sources. Although developed initially to display features
annotated from different sources on a single sequence, it can also be used for displaying
annotations from one (or more) sources on a number of sequences. This can be useful, for
instance to compare the genomic structure of different sequences.� gff2ps can parse Version 1 and Version 2 GFF-formatted records, records that are not com-
pliant with GFF-format are discarded warning user afterwards. Field separator and group
field were defined slightly different from one version to the other, here it is explained how
gff2ps deals with those differences. If records from input GFF-files contain tabulators as
field separator program assumes that record is GFF Version 2 formatted, else if it finds blank-
spaces as field separator then switches to Version 1.
Groups must be defined as a ‘tag-value’ pair in GFF Version 2, where ‘tag’ must be a standard
identifier ([A-Za-z][A-Za-z0-9_]�) and ‘value’ must be a free-text string enclosed between
double-quotes (‘" .�" ’), for example ‘target "HS new gene" ’ fits that group format.
Other group formats force program to switch to GFF Version 1:if there are more than nine
fields it tries to find the ‘tag-value’ pattern, else assumes that the ninth field is the group name
as a quoted or not free-text string. See figure 2.2 for group formats than can be processed by
gff2ps.

6

PAGE
B

L
O

C
K

2

O
N

LY
O

N
E

S
T

R
A

N
D

S
H

O
W

N

Sourcen ...
...

...

S
ou

rc
e1

Ungrouped Elements

Grouped Elements

Group A Group B Group C Group D Group E

Overlapping ElementsOverlapping Groups Group F

B
L

O
C

K
1

R
E

V
E

R
S

E
S

T
R

A
N

D

Source1 ...
...

...

Sourcen N
O

S
T

R
A

N
D

Sourcen ...
...

...

Source1
F

O
R

W
A

R
D

S
T

R
A

N
D

Sourcen ...
...

...

Source1 TITLE AREA

Figure 2.1: Here, you can observe in upper Block how strands are distributed on block area, and
also how sources have reverse order in reverse strand. You can disable visualization for any strand
and place one or more blocks per page. Imagine that lower Block has the same distribution as upper
one, but the figure is only showing one zoomed strand. That strand also focuses on one source track,
what is represented on it, and how we represent grouped and un-grouped elements generated from
GFF-features. There is also shown overlapped elements and groups, each of them can be treated in
different ways bygff2ps.� The program must be easy to use, all its parameters are set by default inside the program.

But must be easy to change plot options which can be modified bya default custom file, also
by a working custom file (smaller than default file and provided to introduce small changes
for single plots), and some of them from command-line. The main goal is to define a system

7

GFF Pattern Group Examples

[1-8] . � [...]) (
123

DMSELE.1
Clone_33223

[1-8] ". �" [...]) 8<: "123"
"DMSELE.1"

"Clone_33223"
"Brain K+ Channel"

[1-8] [A-Za-z][A-Za-z0-9_] � ". �" [...]) 8<: target "123"
SIMILARITY "DMSELE.1"

label "Clone_33223"
Putative_Protein "Brain K+ Channel"

Figure 2.2: Group formats read bygff2ps. ‘[1-8] ’ represents the first eight gff-fields of each
GFF-record. ‘[. . .]’ corresponds to extra fields that are notused by our program.

in which can be easily added new options or redefine old ones. Another issue is that config-
uration files are plain-ASCII text, so they can be edited withsmall and simple text editors.
To know more about this issue you can read section 4.1 and 4.2.The program can work in
background or used in a UNIX pipeline working as a filter (section 3.2).� Source order from input gff-file is preserved when reading those files, it means that you can
easily switch source order in your plot swapping the order ofthe input files. Sources are
shown in plots giving a mirroring symmetry axes for strands forward and reverse, so forward
sources are shown by its ordering from top to bottom and reverse sources are shown counter-
wise, while records without a defined strand are placed in theplot area between the two
strands areas.� User-defined custom files can handle regular expressions, allowing us to define any attribute
variable for multiple similar features —in GFF-elements, group or source blocks— in one
line, to know about this feature you can look at section 4.2.2.� Some of the previous items leads to hierarchical plots, in which Pages are the highest element,
and Blocks are defined within them —this feature allows you toget multiple vertical and/or
horizontal pages, also pages with multiple blocks—. InsideBlocks may appear any Strand
—forward, reverse, or no-frame (defined in GFF-records as ‘.’)—. Each Strand presents
each Source as one plot line or more —if you want to display overlapping groups in the
same line and/or in different lines or if you prefer to split data-sets between grouped and
un-grouped features—, meanwhile Groups belonging to them define features for displaying
sets of GFF-features, which are the basic plot elements (schemed in figure 2.1). Page number
and Blocks per page are set as a Layout variables (see section4.1.1), whereas the rest of
other elements are defined in specific fields from GFF-files records: Sources are named at
second field, GFF-features came from third field, Strands from field seven, and Groups from
ninth (see section 2.1.1 and tables 2.1 and 2.2). Start, End,Score and Frame are defined into
GFF-features as plot attributes.� You can switch on/off visualization of overlapping groups in several lines for same source
track —option by default—, or you can fit them into a single track. gff2ps minimizes
the number of lines needed for that when displaying overlapping groups in different lines.

8

Individual non-grouped GFF-elements are treated as a one element group, which allows you
to display also individual elements without overlapping. If you choose to print in a single line,
you can also define layers for each set of overlapping GFF-features, maybe ‘exons’ at top and
‘cds’ at bottom, enhancing viewing for any of the elements. See sections 4.1.2 and 4.1.3.� You must remember thatgff2ps converts all upper-case characters forfeatures to lower-
case. In order to prevent that one user had defined ‘Exon’, another ‘exon’ and other ‘EXON’,
our program convert them to ‘exon’.� Scores control feature width, but in order to prevent problems when working with data-sets
provided by different programs they are re-scaled for each source, using maximum and min-
imum values as a score range within all scores are re-calculated. Default score is set to
maximum value for each source (when parsing gff-files and a record contains a ‘.’ in Score
field). Further information can be found in section 4.1.4.� We have defined three block areas where are displayed Strands, you can switch on/off any of
them and visualize one up to three strands. Forward strand (‘+’) is always shown at upper
area, while reverse strand is always shown at lower area. When strand is not defined (‘.’)
elements are placed in the central area, between forward andreverse areas. Source order is
preserved from input files, in forward strand sources follows that ordering up to down, also
in the no-strand area, but in reverse strand are shown down toup, so you have a horizontal
symmetry axes between forward/no-strand and reverse strand.� Features for which frame is specified are plotted using a two color code schema. The up-
stream half of the graphical element representing the frameof feature and the downstream
half the complement modulus three of its remainder. This is useful to check frame consis-
tency between adjacent features (for instance, predicted exons). Two adjacent features are
frame-compatible when the color of the downstream half of the upstream feature matches the
color of the upstream half of the downstream feature. This two-color code schema, however,
is only meaningful when the frame has been defined relative tothe feature, and not relative to
the sequence. We have defined four independent frames ingff2ps(‘.’, ‘0’, ‘1’, and ‘2’), that
is used by a coloring procedure for visualizing frame and remainder within shapes. Colors for
frames are also independently defined from feature color definition, and can be customized
too. The complement modulus three for “remainder” is calculated by our program following
this formula:

“Remainder”= (3� (End� (Start+ Frame) + 1) mod 3) mod 3� Score vectors are shown as score-dependent color gradientsand are read from one line which
contain such vectors in those fields beyond group field. We will implement in next version
procedures for showing them as continuous or discrete functions, spikes, and so on... You
must use the following format for the group and the followingfields (next version will work
also with multiple GFF score-feature single-records) :

[Fields 1 to 8] Tag “Value”score; Window window; Stepstep; Scoresscore [. . .] score

9

In this chapter it is explained how you can set system variables in order to start working with
gff2ps. This program was designed to work under UNIX and has been tested under Irix, Solaris
and Linux. In table 3.1 you can see the program versions with which we have worked.gff2ps
has three inner modules: the shell script, the GNU awk script, and the PostScript prologue code.
This prologue contains all procedure sets we have written toobtain the PostScript plots and it is
embedded into ‘gff2ps ’. This is a Bourne shell script —usingsh or bash (systems under Linux
have a link forsh to bash)–, that handles with command-line options, checks if givenfiles exist and
pass them to the GNU awk script. This loads data records and custom definitions generating the full
PostScript output. You can visualize that with a PostScriptviewer —like ghostview, xpsview— or
send to a PostScript printer to obtain a hardcopy.

The main difference from older versions is that GNU awk script is now included within the shell
script to facilitate installation of our program.

3.1 Installation tips

Once you have downloadedgff2ps compressed tarball (‘.tar.gz’), you must decompress files us-
ing the following commands:

[cshell]$ gunzip -c <file> | tar xvf -

If you are working on Linux system, you can try with:

[cshell]$ tar zxvf <file>

It will create a ‘gff2ps/’ directory containing a ‘README’ file, this manual, thegff2ps
scripts and a subdirectory with some PostScript examples1, as is shown in figure 3.1.

You can move those files to another directory if you want. Makesure too that the main program
has executable permissions.

[cshell]$ ls -alF gff2ps
-rw xr-r- 1 jabril users 50360 Sep 13 17:42 gff2ps *

If the program has not execution permissions (boldface highlighted on above line) you can
change it with:

[cshell]$ chmod u+x gff2ps

After that, you may define the following environmental variables, although none is mandatory:
1You can visualize the examples and get new ones at:

http://www1.imim.es/�jabril/GFFTOOLS/GFF2PS-Snapshots.html
10

gff2ps/
gff2ps
README
GNU_GPL
MANUAL_GFF2PS.ps

examples/
Default.tar.gz
1bx1p_long.tar.gz
2bx1p.tar.gz
3bx1p.tar.gz
align_and_shapes.tar.gz

Figure 3.1: Tree directory for gff2ps tarball.� gff2ps needs to write few temporary files in a directory with read andwrite permissions for
current user. Default temporary directory path is set to "/tmp/" but you can assign a different
temporary directory path using the variable ‘GFF2PS_TMP’.� You can specify the path wheregff2ps can find the default files with the shell variable
‘GFF2PS_CFDIR’. Default value is path where you are runninggff2ps.� You can also define the default custom filename you will like with the variable ‘GFF2PS_CUSTOMFILE’,
program default filename for custom file is ‘$GFF2PS_CFDIR/.gff2psrc’.� If you have several versions of GNU awk installed in your system —we recommend version
3.0 or greater if you are going to work with large datasets—, or you do not have GNU awk in
your path, you can provide the path for that GNU awk that needsgff2ps. The program can
read a shell variable for the GNU awk path named ‘GAWK_DIR’, and it will try to run GNU
awk as ‘ "$GAWK_DIR"gawk ’. By default,gff2ps run GNU awk as ‘gawk’ expecting you
can acceed to the interpreter from your path.

Using a Bourne shell (e.g.sh or bash):

[bshell]$ export GFF2PS_CFDIR=" path"
[bshell]$ export GFF2PS_CUSTOMFILE=" file_name"
[bshell]$ export GFF2PS_TMP=" path"
[bshell]$ export GAWK_DIR=" path"

Using a C-Shell (e.g. csh or tcsh):

[cshell]$ setenv GFF2PS_CFDIR "path"
[cshell]$ setenv GFF2PS_CUSTOMFILE "file_name"
[cshell]$ setenv GFF2PS_TMP "path"
[cshell]$ setenv GAWK_DIR "path"

Now your system is ready to work withgff2ps. Just another tip before going further, if the
program is not working yet and you get an error message like:

11

/bin/sh: Command not found.

then you do not have the Bourne shell in the standard directory, andgff2ps could not work. The
only way to solve this problem is changing the first line of thescript. From your command-line,
type:

[bshell]$ which sh
or

[bshell]$ which bash (‘bash’ is more powerful than ‘sh’)

You will get the directory from which you can run the Bourne orthe bash shells (in case you have
many directories choose then one for the latest shell version). After this search, you can modify the
first line from thegff2ps script on any ASCII text editor (like vi or emacs), adapting our script
to your needs. So, as example, imagine you have looked for theshell path in your system, by typing:

[bshell]$ which bash
/usr/bin/bash
/bin/bash

and the latest version is on ‘/usr/bin/bash ’. Replace the first line ongff2ps, that looks like:

#!/bin/sh
by

#!/usr/bin/bash

Now, you have tailoredgff2ps to work in your system.

3.2 Usinggff2ps on command-line

The basic idea is that our program works as a filter having an input, an output, and an error channel.
In figure 3.2 you can have an idea of that, but if you are not usedto work on UNIX it is better
for you to take a look into any introductory UNIX manual for a reference on file redirections and
pipelines(2;3;4;5).

The simplest command line forgff2ps is:

[cshell]$ gff2ps gff_file1 ... gff_filen
Here, input is taken fromn ‘GFF files’ —you can pass from one ton different files or you

can concatenate them in a unique input file—, but it can be passed to standard input from a “pipe”
command (‘|’). Output is shown by standard output. All error, warning and report messages are
redirected to standard error. The problem that arise is thatdefault standard output and default

2D. Gilly. “UNIX in a Nutshell: System V Edition” O’Reilly & Associates Inc. 1994 (2nd ed.)
3L.J. Arthur, T. Burns. “UNIX Shell Programming” John Wiley &Sons Inc. 1997 (4th ed.)
4G. Anderson, P. Anderson. “The UNIX C Shell Field Guide.” Prentice-Hall Inc. 1986 (2nd ed.).
5C. Newham, B. Rosenblatt. “Learning the Bash Shell” O’Reilly & Associates Inc. 1998 (2nd ed.).

12

PROGRAM

Unix “Filter”

STANDARD
I NPUT

STANDARD
OUTPUT

STANDARD
ERROR

L
GFF2PS

gff2ps < input.gff

GFF
Input File

PostScript
output

and Errors
sent to Terminal

GFF2PS

gff2ps -v < input.gff

Reporting
Errors

Disabled

GFF
Input File

PostScript
sent to terminal

GFF2PS

gff2ps < input.gff 1> output.ps

GFF
Input File

PostSCript
Output File

Errors sent
to Terminal

GFF2PS

gff2ps < input.gff 1> output.ps 2> report.txt

GFF
Input File

PostSCript
Output File

Errors
Report File

Figure 3.2: UNIX pipes andgff2ps. Redirecting Standard Error and Standard Output to same file
is not shown but is not useful because if you try to print as a PostScript file then you get a printer
error (redirections are shown in bash command-line format).

standard error are dumped together to console; which means that you will get program warnings
mixed with PostScript output, and that it will not work when you try to print.

3.2.1 Generation of report files

How can we solve that? There are two solutions: on the one hand, if you are not interested on
standard error output you can disable error reporting with ‘-v’ option (gff2ps quiet mode); on
the other hand, if you are interested to have both, you can redirect PostScript output from standard
output to a file. First option is useful when including our program in a shell script; second is better
when you are working in command-line because you can detect on the fly if something is wrong.

13

Both ways are illustrated here:

[cshell]$ gff2ps gff_file1 ... gff_filen >output.ps

Writes output tooutput.ps.

[cshell]$ cat gff_file1 ... gff_filen | gff2ps -v -- - | ghostview -

In this example (also very simple), input come from ‘cat’ output redirected to standard input
(defined by ‘-’) and standard output is redirected to ‘ghostview’. Note that there is a double hyphen
(‘--’) following option ‘-v’, this notify to shell-script ‘getopts’ function that there are no options
left, for further info about that see section 4.3. By default, only errors and warnings are shown by
standard error, you can disable all of them as I’ve shown you above or you can enable a full report
—that will be useful to report bugs as I explain in the next section— with ‘-V’ option (note that
is an upper-case here). When reporting bugs you have to attach a report file that will be obtained
redirecting standard error to a file, you can see examples of this on lines below, for c-shell and bash:

[cshell]$ (gff2ps -V -- gff_file1 ... gff_filen >output.ps) >& output.rpt

[bshell]$ gff2ps -V -- gff_file1 ... gff_filen >output.ps 2>output.rpt

3.2.2 Command-line help

To know about available Command-line Options, you can type:

[cshell]$ gff2ps -h

Option ‘-h’ sends to terminal a short description on eachgff2ps options, also gives some
extra information about color names, and environment variables. There is another help option‘-H<option>’ that gives you only the help line for that option, and its useful when you are not sure
about what any option is doing. An example:

[cshell]$ gff2ps -H v

gff2ps : Option Definition Help.
-V Verbose mode, a full report is sent to standard error

(default is only send Warnings).
-v Silent mode: Disable all warnings, no messages sent

to standard error.

Also you can get a pretty print for the options listed by help in appendix B.

3.3 Reporting Bugs

If you need help after reading this manual pages, detect a bug, or you have any suggestions, you
are free to send an e-mail to the author:jabril@imim.es. In order to organize incoming mails, you
can help us defining asSubject of your e-mail: “GFF2PS - HELP” if you need any clarification;

14

“GFF2PS - BUG REPORT” if you find any bug or something is not plotted properly; and “GFF2PS
- SUGGESTION” if you think that something could be improved or you want new ideas to be
included. You will get a reply as soon as possible. Also when reporting a bug, it will be useful to
attach a report file fromgff2ps —see previous section on how to get it— and program versions
that you have installed on your system —like those reported in table 3.1—.

If you have problems when printinggff2ps output or something is not plotted properly, first
check printer settings on your system. Try printing anotherPostScript file to test if is a printer
problem or from our output. Our PostScript code has been tested on PostScript Level 2 and on
Level 3 printers, but, if you have enough memory in your printer it has to work in a Level 1 because
we have tried to avoid specific Level instructions when we wrote that code. It’s also possible to
print to a non PostScript printer if you are using Ghostview or similar to visualize the results, and if
you get in trouble, please make sure that is not a problem of filters defined for those printers before
reporting a printing bug. If all of this does not work then send a bug report mail, specifying which
printer you have, its specs, which PostScript Level has thatprinter, any printing error message from
the system, and do not forget to attach a file containing the PostScript output you have obtained, the
one is giving you such problems.

Red Hat LINUX
GNU Awk 3.0.3
GNU bash 1.14.7(1)
gv 3.5.8
GNU Ghostscript 4.03

IRIX
GNU Awk 3.0.3
GNU bash, version 1.14.2(3)
Ghostview v.1.5
Ghostscript 2.6.2

SOLARIS
GNU Awk 3.0.3
GNU bash, version 2.01.0(1)
Ghostview v.1.5
Aladdin Ghostscript 3.33

Table 3.1:gff2ps has been tested on those Unix systems, working with shown program versions.

15

In this section we should learn first of all which options are available ongff2ps to modify at-
tributes for plot features from custom files. Those featuresare divided into four groups of variables:
page layout, GFF-elements, groups and sources. The two reasons for such classification is the way
that custom files are processed by our program, and what each group in the final plot represents.
The second reason is the most important and was the one which lead us to read and process them the
way they are by our program. Layout Features are involved in global page layout, variables from
this block affect page format and number, title area, how many blocks are displayed, strands shown.
Features related to GFF-elements are relative to how they are drawn, their shapes, fill color, and so
on. Group features define how to represent grouping for sets of GFF-features, and permit to redefine
the attributes of GFF-features contained within a Group. Finally, Source features are controlling the
setting for plot rows, understanding them as a set of groups and features obtained from one source.
You might found that hierarchy so strange, but working with genomic data you can easily see that
sources represent the methods —gene prediction programs, blast matches, etc. . . — from which you
get the genomic data, and you may be interested on comparing them. In that sense Groups can be
defined as “genes” and GFF-features as the genomic elements that compose those genes —such as
exons, introns, and so on—.

Once we know which options are available, we should discuss about what happens whether
you have defined the same variable on different sections (such feature_color) and which variable
is used bygff2ps in case of conflict between them. We also should consider howgff2ps
manages customization files and how can you take advantage from regular expressions to simplify
your custom files when working with large GFF-formatted data-sets. Then we should know what
options are available from command-line and how they affectto custom files previous settings.
There are also a hierarchy on how options are processed bygff2ps; when you are running the
program, the first step is generating a defaults array for alloptions, the next step is processing
your GFF-data to extract GFF-features, Groups and Sources contained on it. Following steps are
reading Default Custom File if it exists and, after that, theExtra Custom File if user provides
it; plot attributes for every element —GFF-features, Groups, Sources and Layout— are redefined
from program defaults to custom files settings. Before PostScript output generation, command-line
options introduce last modifications on plot attributes array, which is now containing information on
how plot attributes are going to be drawn. As you can see, defaults from program are overridden by
Default Custom File, those are overridden by Extra Custom File and finally Command-Line Options
has the last word on plot attributes.

4.1 Custom File Variables Definition

Here we are going to define how plot attributes for Custom Files must be defined to be read by our
program. There are only three fields on each variable definition: plot element, variable name, and
value for that variable. This is not true for Layout Featuresthat only need two fields, plot element is
not defined on them because all belong to same element, named “Layout” of course. Generic format
for attribute definition is:

For Layout features:

16

<variable_name>=<value>
For GFF-element, Group and Source features:<plot_element>::<variable_name>=<value>
Notice that field separator between<plot_element> and<variable_name> is a double colon

(‘::’) and <value> assignment is made by equal sign (‘=’).
Plot attributes, as we have explained, are grouped in four types: those relatives to global at-

tributes and those related to GFF-features, Groups or Sources. Section 4.1.5 explains howgff2ps
solves conflicts between variables from defaults, custom files and command-line. You will find a
list of all available variable names with a short explanation of what they do and available values for
them in Appendix B. In the following subsections you will finda description for all the available
custom-file variables. Header on each description containsthe variable name as it will be written
on the custom files, applying previous variable definition format, on the left side and default values
on the right one. When more than one value are available for those variables, it is represented by a
‘|’, meaning that you can assign any of those values (but only one) to the variable. Other values are
explained on variable description. References to value tables are included when there are so many.

In the following subsections,<BOOLEAN> means that you can pass to the variable any of
those values:‘1’ or ‘0’, ‘on’ or ‘off’, ‘yes’ or ‘no’ (‘y’ or ‘n’), ‘true’ or ‘false’ (‘t’ or ‘f’); either in
lower-case or capital letters. Other values are set to‘0’.

4.1.1 Layout Features

As we have stated before, layout variables don’t need to be assigned to a plot element because they
share same element, and so they have a slightly shorter variable definition which miss the first field
—describing plot element— and the double colon. Here there are the Layout Features listed:

page_size= <page_format> Default= a4

Available values for<page_format> are shown in table C on ‘Page Format’ column.

page_bbox= <page_format,page_width,page_height> Default= auto,0,0

Default value force program to use previous variable definition, which sets pre-defined widths
and lengths for many page formats. Do not edit unless you wantto define a new page for-
mat with your own sheet sizes, this option overrides‘page_size’ variable.<page_width>
and<page_height> must be defined in printer points (pt unit not needed in this variable
definition). It is mandatory to provide both. See table C.7 for a reference on page size values.

page_orientation= <Landscape> j <Portrait> Default= Landscape

You can visualize your plots on‘Landscape’ —sheet larger side from left to right— or‘Por-
trait’ —sheet larger side from top to bottom—.

margin_left= <#unit> Default= 1cm

margin_right= <#unit> Default= 1cm

margin_upper= <#unit> Default= 1cm

margin_lower= <#unit> Default= 1cm

You can set page margins with those four variables.‘#’ means any real number.<unit> can
be ‘cm’, ‘in’ or ‘pt’, note that there is no blank space between numbers and units.

17

foreground_color= <color> Default= FGcolor

background_color= <color> Default= BGcolor

‘FGcolor’, ‘BGcolor’, or any of the color names defined on table C.6.‘FGcolor’ —default is
‘black’— and ‘BGcolor’ —default is ‘white’— are special color names that have a color de-
fined by default, but once you have set one color forforeground_color /background_color
custom-file variables you can use those special color names to assign background/foreground
color to any other feature.

page_number= <#> Default= 1

‘#’ means any positive integer value greater or equal than 1. By default gff2ps fits all
sequence nucleotides on the same page, but you can split thatlength in many pages as you
need (useful when you have a long sequence).

zoom=<first_nucleotide>..<last_nucleotide> Default= �..�
If you are just interested in visualizing a certain region onthe whole sequence. You have
four possible combinations to define values for this variable: ‘�..�’, ‘<first_nucleotide>..�’,
‘�..<last_nucleotide>’, ‘<first_nucleotide>..<last_nucleotide>’. ‘�’ means to read nu-
cleotide position from input files.‘first_nucleotide’ and ‘last_nucleotide’ are nucleotide
positions.

blocks_x_page= <#> Default= 1

Any positive integer value greater or equal than 1. If 0 is given then multiple vertical pages
are generated, with a fixed track width. With this variable you can define how many plot areas
you need to display by page. Nucleotides shown per page are divided into blocks number,
and that is the nucleotide length for each block.

nucleotides_x_line= <nucleotide_number> Default= 0

Default value‘0’ makes program to read sequence nucleotide length from inputdata. Any
integer value means to force those nucleotide number shown per page. Page number and
blocks per page are re-calculated, also when you provide them as a variable or as an option, if
you pass a nucleotides per line value, to the block and page number needed to view given nu-
cleotides per lines value within a block. When leaving default value to‘nucleotides_x_line’
(set as ‘0’), nucleotides needed to fill block width are calculated with following formula:

nucleotides_x_line= sequence_lenght
page_number� blocks_x_page

where‘sequence_lenght’ is the nucleotide sequence length read from input-files or the nu-
cleotide difference for zoom start and end positions.

block_style= <default> j <boxed> Default= default

Blocks can be shown without frame —‘default’— or with a frame around them —‘boxed’—.

default_block_spacing_width= <#unit> Default= 0.25cm

‘#’ means any real number.<unit> can be‘cm’, ‘in’ or ‘pt’. Distance between one block to
the next, also from the header area to the first block.

18

show_blocks_top-bottom= <BOOLEAN> Default= 1

‘1’ means show blocks Top-to-Bottom,‘0’ means Left-to-Right. When splitting output on
several pages and having more than one block per page, you canstart the next bottom block
or the next right block —on the next page— with the last nucleotide of current block, so in
second case you can join multiple pages with multiple blocksand nucleotides displayed on
all the blocks are correlative from one page to the next.

header_style= <none> j <default> j <boxed> Default= default

Header can be defined as the ‘title’ region and its elements are title, sub-title, page-number,
date and time.‘none’ —does not plot header area and room left is used in plot area toenlarge
blocks—,‘default’ —no framed header—,‘boxed’ —put a frame around header area—.

title= <none> j <default> j <free-text_string> Default= default

‘none’ does not print title,‘default’ prints first input filename, and‘free-text_string’ can be a
title string given by user.

subtitle= <none> j <default> j <free-text_string> Default= default

‘none’ does not print sub-title,‘default’ as‘none’, ‘free-text_string’ can be a sub-title string
given by user.

show_page_numbers= <BOOLEAN> Default= on

Boolean switch for displaying or not page numbering on top right corner of header area.

show_date= <BOOLEAN> Default= on

Boolean switch for displaying or not system date on right side of header area.

show_time= <BOOLEAN> Default= on

Boolean switch for displaying or not system time also on right side of header area.

major_tickmarks_num= <#> Default= 10

Any positive integer number. It defines number of major tickmarks shown per line, dividing
nucleotides per line by the given parameter.

major_tickmarks_nucleotides= <nucleotide_number> Default= -1

Same as above but nucleotide distance between two neighbor major tickmarks is given,‘-1’
force program to use‘major_tickmarks_num’ on ‘nucleotides_x_line’.

minor_tickmarks_num= <#> Default= 10

Any positive integer number. It defines number of minor tickmarks shown between two major
tickmarks, dividing available gap size between major tickmark by the given parameter.

minor_tickmarks_nucleotides= <nucleotide_number> Default= -1

Nucleotide distance between two neighbor minor tickmarks,‘-1’ force program to use‘mi-
nor_tickmarks_num’ on ‘nucleotides_x_line’.

show_grid= <BOOLEAN> Default= on

You can display vertical dotted lines for each minor tickmark with this boolean switch.

19

show_inner_scale= <both> j <default> j <none> j <top> j <bottom> Default= both

That inner scale is shown only if there are more than one strand displayed on the plot, and is
used to delimitate strand areas (when three strands are visualized you get two inner rulers).
‘both’ and‘default’ enable both nucleotide rulers,‘none’ switch off both rulers,‘top’ to show
only the top ruler, and‘bottom’ for showing only the bottom one.

show_outer_scale= <both> j <default> j <none> j <top> j <bottom> Default= both

There are two outer rulers delimitating block upper and lower sides. ‘both’ and ‘default’
enable both nucleotide rulers,‘none’ switch off both rulers,‘top’ to show only the top ruler,
and‘bottom’ for showing only the bottom one.

default_scale_width= <#unit> Default= 0.25cm

You can modify nucleotides ruler size, having a thinner or thicker rule, with smaller or larger
font for nucleotide positions on major tickmarks. You can use ‘#cm’, ‘#in’, ‘#pt’. ‘#’ means
any real number.

default_scale_spacing_width= <factor> Default= 1

You can increase or reduce the amount of space between each scale ruler and the source
tracks. This space is obtained multiplying‘factor’ by ‘default_scale_width’; so if you do not
want free space between rulers and source tracks, you can setfactor value to‘0’.

nucleotide_scale= <SCALE> Default= default<SCALE>� <default> j j <bases> j <k> j <kb> j <kilobases> j <m> j <mb>j <megabases>
This variable sets the scale in which the numbers on the nucleotide ruler should be displayed.
‘default’, ‘b’ and ‘bases’ show the nucleotide positions as the whole number (0, 100, 1000,
1000000);‘k’, ‘kb’ and‘kilobases’ show that in ‘Kb’ (0Kb, 0.1Kb, 1Kb, 1000Kb);‘m’, ‘mb’
and ‘megabases’ show that in ‘Mb’ (0Mb, 0.0001Mb, 0.1Mb, 1Mb). Default in base num-
bers is useful for small sequences; on the other side, showing in megabases is useful for large
sequences and for posters.

strand_show_forward= <BOOLEAN> Default= on
strand_show_reverse= <BOOLEAN> Default= on
strand_show_independent= <BOOLEAN> Default= on

Boolean switches for displaying strand areas:‘on’ enables to plot area and‘off’ disables. You
may be not interested in visualize forward strand area —because it is empty or you want to
enlarge reverse area to focus on some details— so you can disable this area. At least one
strand area must be shown, this allows you to display one, twoor three strands (including all
features without a defined strand‘.’ in the central area). Strand order for strand areas within
the block is always from top to bottom: forward elements, no-strand elements and reverse
elements (upper, middle and lower block areas respectively).

show_left_source_label= <BOOLEAN> Default= true

Boolean switch for printing source-labels on left side of blocks: ‘true’ enables and‘false’
disables.

left_source_label_width= <#unit> Default= 2cm

Left source-labels width. You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

20

show_right_source_label= <BOOLEAN> Default= false

Boolean switch, shows source-labels on right side of blocks: ‘true’ enables,‘false’ disables.

NOTE: You can have source-labels on both block sides, left and right, but it takes some
precious drawing area that will be available for visualizing your sequence. Also you can
reduce label width, providing more room for that drawing area.

right_source_label_width= <#unit> Default= 2cm

Right source-labels width: You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

sort_tracks_by_sequence= <BOOLEAN> Default= on

By default, when multiple sources with multiple sequence IDs are going to be plotted on the
same page tracks are sorted by sequence (putting closer all sources for the same sequence).
You can sort them by source (placing together all sequences for the same source) too.

default_track_width= <#unit> Default= 1cm

Default source tracks ‘vertical’ width: You can use‘#cm’, ‘#in’ and ‘#pt’, where‘#’ means
any real number. You can enlarge or reduce track width for allsources on plot here.

default_track_spacing_width= <#unit> Default= 0.25cm

Default source tracks spacer ‘vertical’ width: You can use‘#cm’, ‘#in’ and ‘#pt’, where‘#’
means any real number.

group_label_scale= <factor> Default= 1

You can increase or reduce the size of group labels (globally) by ‘factor’.

position_label_scale= <factor> Default= 1

You can increase or reduce the size of coords labels (nucleotide start-end positions) by‘fac-
tor’.

frame_unknown_color= <COLOR> Default= orange

frame0_color= <COLOR> Default= blue

frame1_color= <COLOR> Default= red

frame2_color= <COLOR> Default= green<COLOR>� <color> j <default> j <FGcolor> j <BGcolor>
‘color’ can be any of the color names defined on table C.6.‘default’ is black,‘FGcolor’ uses
the color you have defined for‘foreground_color’ and ‘FGcolor’ uses the color set for the
‘background_color’ (see section 4.1.1). Those four variables are global definition for frame-
remainder fill-shape mode, and are used when you define for anyof the ‘GFF-feature_key’
in the feature block of your custom file (see this variable definition on page 24):<GFF-feature_key>::fill_shape_mode= <frame-remainder>
You can find howgff2ps calculates remainder for a given frame in page 9.

show_positions= <BOOLEAN> Default= false

‘true’ or ‘false’. Shows nucleotide start-end positions —in forward coordinates— for all
elements on the plot.

21

min_group_separation= <nucleotide_number> Default= 10

Number of nucleotides from 0 ton defining the minimum nucleotide distance between two
consecutive groups to avoid overlapping on same track when overlapping groups unfolding
into several tracks is enabled (see variable definition for‘unfold_grouped_ungrouped’, ‘un-
fold_grouped_line’ and‘unfold_ungrouped_line’ in section 4.1.4, page 26).

4.1.2 GFF-element Features

You must define a<GFF-feature_key> —from third field on GFF-file— to which is going to
assign the variable value, it can be a regular expression —see section 4.2.2—, an standard key value
—see appendix A— or a GFF-feature that you have already defined in your GFF-file. You already
know that this feature-key must not be case-sensitive, andgff2ps always convert them to lower
case characters.<GFF-feature_key>::feature_color= <COLOR> Default= default<GFF-feature_key>::feature_stroke_color= <COLOR> Default= default<COLOR>� <color[..color[..]color]> j <default> j <FGcolor> j <BGcolor>

‘feature_color’ defines fill color for GFF-features shapes and‘feature_stroke_color’ the
color for border line of those shapes. Color names are from table C.6.‘default’ is black,‘FG-
color’ uses the color you have defined for‘foreground_color’ and ‘FGcolor’ uses the color
set for the‘background_color’ (see section 4.1.1). For some values on‘fill_shape_mode’
and‘fill_vector_mode’ —1_color , 2_color , 3_color —, you can set up three colors using
two consecutive dots between each color‘..’ without blank spaces, but if you choose one
of those fill modes and assign less colors than they need then,default values are given by
gff2ps.<GFF-feature_key>::shape= <shape_name> Default= box

Defining feature drawing shape. See table C.1 for available values, default is defined as‘box’.<GFF-feature_key>::fill_shape_mode= <fill_mode> Default= default

Setting the way to fill the shapes for the given GFF-feature. See table C.4 for available values.<GFF-feature_key>::fill_vector_mode= <fill_mode> Default= default

Vectors are special features that allows to display position-score data-sets. Here you can
choose how you want to visualize those vectors in a gradient colored line. See table C.5 for
available values.<GFF-feature_key>::vert_align= <align_mode> Default= default

Vertical alignment for features is referred to source baseline. Available values are only‘de-
fault’ —centered on source track baseline, half shapes are drawn over it—, ‘center’ —same
as previous— and‘mirror’ —half shapes are drawn under the track baseline— (see table C.2).<GFF-feature_key>::layer= <#> Default= 0

First is made a sorting for feature going to be placed on lineson this variable. By default
all features are drawn on lower layer (that is ‘0’), but you can move them to upper layers by
setting a greater number for‘#’ than default. Within a layer, larger elements are displayed
below the shorter ones. When groups are shown as GFF-features they are always sent to
lowest layer (‘0’).

22

<GFF-feature_key>::label= <LABEL> Default= default<LABEL>� <++none++> j <++default++> j <user-def_string>
Printing labels for GFF-elements (still not implemented).‘none’ means not to display element
label, ‘default’ shows GFF-feature value, and a‘user-def_string’ represents free-text user
defined label that is printed in place of GFF-feature value.<GFF-feature_key>::show_feature= <BOOLEAN> Default= on

Boolean switch to visualize or not any GFF-feature:‘on’ shows feature,‘off’ does not show
feature.<GFF-feature_key>::show_feature_positions= <BOOLEAN> Default= off

Boolean switch to visualize or not start and end nucleotide positions for one GFF-feature:
‘on’ shows positions,‘off’ does not show positions.

4.1.3 Group Features

A <GFF-group_key>—from field nine on GFF-file— must be defined as a regular expression —
see section 4.2.2— which include a group value that you have defined in your GFF-file. The reason
for such “constrain” is thatgff2ps defines groups as a compound string containing sequence
name, source name and group name when the group is defined in the GFF file, to avoid mix groups
defined with same string from different sequences or sources. If there is no group in ninth field,
program generates an internal group tag for each ungrouped feature record, that construct is made
by joining record line number, sequence name —first field—, source field —the third—, and strand
—on seventh field—; so when trying to change variables for those groups you may need to use
regular expressions. Also you can force the program to re-write default custom file, those groups
will be printed in that file (see section 4.2 for further details on custom files generation). You
can visualize groups not only as a grouping bracket or line, also as a GFF-feature, by giving a
‘group_shape’ (default value for this variable is‘none’).<GFF-group_key>::feature_color= <COLOR> Default= default<GFF-group_key>::feature_stroke_color= <COLOR> Default= default

To force same fill-color for all GFF-features within that group, overriding any‘feature_color’
definition for its elements from the GFF-features custom-file block. See‘COLOR’ definition
in next variable.<GFF-group_key>::group_color= <COLOR> Default= default<COLOR>� <color[..color[..]color]> j <default> j <FGcolor> j <BGcolor>
‘feature_color’ defines fill color for all GFF-features shapes and‘feature_stroke_color’ the
color for border line of those shapes, that belong to the samegroup. Also if you like to print
the group as an extra GFF-feature you can set fill-color here.Color names are from table C.6.
‘default’ is black, ‘FGcolor’ uses the color you have defined for‘foreground_color’ and
‘FGcolor’ uses the color set for the‘background_color’ (see section 4.1.1). For some values
on ‘fill_shape_mode’ and ‘fill_vector_mode’ —‘1_color’, ‘2_color’, ‘3_color’—, you can
set up to three colors using two consecutive dots between each color ‘..’ without blank spaces,
but if you choose one of those fill modes and assign less colorsthan they need then default
values are given bygff2ps.

23

<GFF-group_key>::group_shape= <shape_name> j <default> Default= none

Defining group drawing shape, visualizing the group as an extra GFF-feature. See table C.1
for available values, default is defined as‘none’.<GFF-group_key>::fill_shape_mode= <fill_mode> Default= default

Setting the way to fill the shapes for the given GFF-feature. See table C.4 for available values.<GFF-group_key>::fill_vector_mode= <fill_mode> Default= default

Vectors are special features that allow to display position-score data-sets. Here you can
choose how you want to visualize them in a gradient colored line. See table C.5 for available
values.<GFF-group_key>::group_line= <line_type> Default= default

You can select which kind of line you would like to ‘underline’ a group from start to end. See
table C.3 for available values.<GFF-group_key>::group_line_color= <COLOR> Default= default<COLOR>� <color> j <default> j <FGcolor> j <BGcolor>
‘default’ is black, ‘FGcolor’ uses the color you have defined for‘foreground_color’ and
‘FGcolor’ uses the color set for the‘background_color’ (see section 4.1.1).‘color’ may be
any of the color names defined on table C.6.<GFF-group_key>::vert_align= <align_mode> Default= default

Vertical alignment for groups is referred to source baseline, overrides any definition for all
features contained in that group. Available values are only‘default’ —centered on source
track baseline, half shapes are drawn over it—,‘center’ —same as previous— and‘mirror’
—half shapes are drawn under the track baseline— (see table C.2).<GFF-group_key>::label= <LABEL> Default= default<LABEL>� <++none++> j <++default++> j <user-def_string>
Printing labels for GFF-groups.‘none’ means not to display element label,‘default’ shows
group tag value from input files, and a‘user-def_string’ represents free-text user defined
label that is printed in place of group tag value.<GFF-group_key>::show_group= <BOOLEAN> Default= on

Boolean switch for visualizing any group (and also all GFF-elements which it will contain):
‘on’ shows group,‘off’ does not show group.<GFF-group_key>::show_group_positions= <BOOLEAN> Default= off

Boolean switch to visualize or not start and end nucleotide positions for all GFF-features for
that group:‘on’ shows positions,‘off’ does not show positions.

4.1.4 Source Features

We obtain<GFF-source_key> from GFF-records second field, it can be defined as regular ex-
pression —see section 4.2.2— or a source that you have definedin your GFF-file.<GFF-source_key>::feature_color= <COLOR> Default= default

24

<GFF-source_key>::feature_stroke_color= <COLOR> Default= default

‘feature_color’ defines fill color for all GFF-features shapes and‘feature_stroke_color’ the
color for border line of those shapes, that belong to the samesource. Force same fill-color
for all GFF-features within that source tracks, overridingany ‘feature_color’ definition for
its elements from the GFF-features custom-file block.<GFF-source_key>::group_color= <COLOR> Default= default

When printing groups as an extra GFF-feature you can override ‘group_color’ definition for
all groups on that source from the group custom-file block.<COLOR>� <color[..color[..]color]> j <default> j <FGcolor> j <BGcolor>
Color names are from table C.6.‘default’ is black,‘FGcolor’ uses the color you have defined
for ‘foreground_color’ and ‘FGcolor’ uses the color set for the‘background_color’ (see
section 4.1.1). For some values on‘fill_shape_mode’ and ‘fill_vector_mode’ —‘1_color’,
‘2_color’, ‘3_color’—, you can set up to three colors using two consecutive dots between
each color‘..’ without blank spaces, but if you choose one of those fill modesand assign less
colors than they need then default values are given bygff2ps.<GFF-source_key>::left_label= <LABEL> Default= default<GFF-source_key>::right_label= <LABEL> Default= default<LABEL>� <++none++> j <++default++> j <++sequence++> j <++source++>j <++both++> j <++info++> j <user-def_string>
Printing labels for sources:‘++none++’ means not to display element label,‘++default++’
shows source or sequence string value from input files (depends on‘sort_tracks_by_sequence’
variable),‘++sequence++’ force to show sequence name for those source tracks,‘++source++’
does the same as previous but showing source name,‘++both++’ shows sequence and source
names,‘++info++’ prints the same as‘++both++’ plus two extra codes (first for ‘G’rouped-
‘U’ngrouped-‘M’ixed tracks and second for ‘+’/‘-’ strand), and a‘user-def_string’ represents
free-text user defined label that is printed in place of source tag value.<GFF-source_key>::show_left_source_label= <BOOLEAN> Default= on<GFF-source_key>::show_right_source_label= <BOOLEAN> Default= off

By default only appears left track labels on the plot but you can visualize both, left and right,
or only right, playing with these two variables.<GFF-source_key>::source_label_scale= <factor> Default= 1

You can increase or reduce the size of source label by‘factor’. This is useful to resize those
labels when modifying‘track_scale’ factor.<GFF-source_key>::source_style= <default> j <boxed> Default= default

‘default’ —no framed source-track— or‘boxed’ —put a frame around source-track—.<GFF-source_key>::source_line= <line_type> Default= default

Setting line-style for source baseline. See upper panel on table C.3 for available values.<GFF-source_key>::source_line_color= <COLOR> Default= red

Defining color for source baseline.<COLOR>� <color> j <FGcolor> j <BGcolor>
25

‘FGcolor’ uses the color you have defined for‘foreground_color’ and ‘FGcolor’ uses the
color set for the‘background_color’ (see section 4.1.1).‘color’ can be any of the color
names defined on table C.6.<GFF-source_key>::vert_align= <align_mode> Default= default

Vertical alignment for source baselines within the source tracks. See table C.2 for all available
values.<GFF-source_key>::range= <none> j <default> j <#..#> Default= default

Defining range of lower-upper source-scores: with‘none’ all scores are set to ‘1’,‘default’
takes score range obtained from input files, and‘#..#’ forces range to defined values —it
works like ‘zoom’ layout variable: ‘#..#’ is like ‘default’, ‘min..#’ takes max from input
file, ‘#..max’ takes min from input file, and‘min..max’ defines both, upper and lower score
limits—.<GFF-source_key>::track_scale= <#> Default= 1

Any positive real number. This variable allows you to resizeone or more source-tracks, giving
a different aspect ratio than the others (i.e. twice wider orhalf wider than normal tracks).<GFF-source_key>::track_spacing_scale= <#> Default= 0.25

Any positive real number, this variable allows you to resizethe amount of space between two
tracks of different consecutive sources (like an spacer forsource-tracks).<GFF-source_key>::keep_feature_label_space= <BOOLEAN> Default= on

Boolean switch that controls how much of the source track width is assigned to draw features
and how much to feature labels.‘on’ reserves half of the track width to labels and the other
half for the features,‘off’ forces the features to be drawn fitting the full source track width.<GFF-source_key>::unfold_grouped_ungrouped= <BOOLEAN> Default= off

Boolean switch to split grouped elements from ungrouped:‘on’ grouped and ungrouped ele-
ments shown in two tracks,‘off’ all grouped and ungrouped elements fitting only one track.<GFF-source_key>::unfold_grouped_line= <BOOLEAN> Default= on

Boolean switch to split overlapping grouped elements in several tracks:‘on’ split groups,‘off’
all grouped elements fitting only one track.<GFF-source_key>::unfold_ungrouped_line= <BOOLEAN> Default= on

Boolean switch to split overlapping ungrouped elements in several tracks: ‘on’ split un-
grouped elements,‘off’ all ungrouped elements to one track.<GFF-group_key>::show_source_positions= <BOOLEAN> Default= off

Boolean switch to visualize, or not, start and end nucleotide positions for all GFF-features for
that source:‘on’ shows positions,‘off’ does not show positions.

4.1.5 Solving conflicts among variables

Here we should try to give you an idea of howgff2ps solves conflicts among variables. You must
know that the program now warns the user if he provided a wrongvariable name in any section,

26

layout, features, groups or sources. If you define a wrong value for any of the variables, then the
program assumes the default value for that variable but is not warning on that.

In those cases in which one variable can be defined in more thanone section the program uses
for the plot the value for the higher level definition. As example, the variable‘feature_color’ that
can be defined in the feature, the group and the source sections. If you have defined the variable in
the feature and in the group sections, the value for all the features within the group for which you
have defined the variable is set from the group section, all the other features not in that group are set
by the variable on the feature section.

The program has all the variables set on default values; if default custom file exist, those vari-
ables redefined in that file override the defaults. If you provide an extra custom file from command-
line, its variable definitions will modify the corresponding variable values. Last changes are given
by some command-line options, that reset some of the layout variables.

There is one special case in which one variable definition excludes another one depending on
the input data. That happens for the‘fill_shape_mode’ and‘fill_vector_mode’ variables, the first
defines the way in which are going to be filled those features that are related to a shape (almost all
GFF records), the second sets the color filling procedure forthose features that represent a scoring
vector (those special records in which the group tag is “Vector”, and that provide a set of scores,
see page 9). Depending on the input record (if it is a scoring vector or not)gff2ps will use one
variable or the other to define the procedure that the user would like for color filling.

4.2 Custom Files

gff2ps can handle two customizing files in which you can define new values for the variables
used on plots:� Default Custom File� Extra Custom File

By default there is no custom file, you must force the program to write Default Custom File,
but program works as well without them because it has a default values array coded within. Three
command-line options can help you with custom files:

-d Writes (or re-writes if exist) Default Custom File. Defaultfilename for this custom file is
‘ .gff2psrc ’, but you can define another Default Custom filename with the environment
variable "GFF2PS_CUSTOMFILE" —further information ongff2ps environment vari-
ables on section 3.1—.

-D <default_custom_filename> If you want to create a new Default Custom-file, with the given
filename, and without overwriting ‘.gff2psrc ’, you must use this option. Although you
have to set the environment variable "GFF2PS_CUSTOMFILE" as the new custom-file name
if you wantgff2ps working with it. An example will be:

1. Makegff2ps to generatenewdefs Custom File:
[cshell]$ gff2ps -D newdefs -- file1.gff file2.gff > output1.ps

2. Then define the new Default Custom File name:� Using a Bourne-Shell (e.g. bash):
[bshell]$ export GFF2PS_CUSTOMFILE="newdefs"

27

� Using a C-Shell:
[cshell]$ setenv GFF2PS_CUSTOMFILE "newdefs"

3. Now you can work with this Default Custom File on other inputs, without passing cus-
tom file option togff2ps:
[cshell]$ gff2ps file3.gff file4.gff > output2.ps

-C <custom_filename> Loads given Custom File and appends it to Default Custom Fileor to
program defaults if there is no Default Custom File defined.

You may guess why we have defined two different Custom Files and what you can do with
them. The answer is that you can modify Default Custom File the way you like and use it as a
global defaults for your plots, then you can modify many variables as you only need for one plot
with “-C” option and the secondary Custom File, which has notto be larger as Default Custom File.
You can have as many Custom Files as you want, and use each of them in several plots or in the
same one, but you only can append one Custom File to Default Custom File.

[cshell]$ cat > plotAdefs
F # (Return)
exon::shape=arrow (Return and CTRL+C)
[cshell]$ gff2ps -C plotAdefs -- file1.gff file2.gff > output1b.ps

Figure 4.1: Writing our first custom file. That one only contains one variable definition for GFF-
elements, in this case we are modifying‘shape’ value for ‘exon’ GFF-feature to‘arrow’ in out-
put1b.ps plot.

Following the previous example on “-D” option, we can createa small Custom File and pass it
to the program which adds to"newdefs" variable definitions. Figure 4.1 provides an example for
a simple and very short extra custom file. Last command-line implies to modify‘shape’ variable
for ‘exon’ GFF-feature from"newdefs" to "plotAdefs value for this variable. When writing
Custom File, you can take a look on variable definition from Default Custom File, copying and
pasting lines defining a variable from it.

You can use‘#’ for comments. Those lines starting with‘#’ are understood as comment lines.
You can place a comment at the end of a variable definition, butthere must be almost one blank
space between variable definition and‘#’. Empty lines, comment lines and lines that does not apply
on variable definition format (see 4.1) are ignored when reading Custom Files. There is only one
exception, the block separator comment that is needed to define where each of the four blocks starts
in which you can divide Custom Files.

4.2.1 The Block Separator Comment

Block Separator Comments are fixed string comments thatgff2ps treat as headers for delimiting
each of the four blocks of variables you can define into a Custom File. We have defined those four
blocks at the beginning of this section: Layout, GFF-elements, groups and sources. When writing
the Default Custom File,gff2ps always creates the four blocks, but you must specify at leastone
for your Custom File as we could see in the above example of working with user-defined custom
files (figure 4.1). In that example we have set the variable ‘shape’ for ‘exon’ as an ‘arrow’, because
it is a GFF-feature variable definition we wrote the Block Separator‘# F #’ to tell the program we
were re-defining a variable from GFF-elements Block.

28

#
Optional Header
(gff2ps generates a standard header when creates Default Custom File)
#

(Comments and empty lines are skipped)
L # (This is Block Separator for Layout)<variable_name1>=<value> # blah,blah,blah. . . (Note that there is a blank space

...
...

...
—shown here as‘ ’— before #)

blah, blah, blah. . . (Extra comment-lines can be added where you need)
...

...
...<variable_namen>=<value>

F # blah, blah, blah. . . (You can place extra comments also here, after second #)<GFF-feature_key1>::<feature_variable_name>=<value>
...

...
...<GFF-feature_keyn>::<feature_variable_name>=<value>

G #<GFF-group_key1>::<group_variable_name>=<value>
...

...
...<GFF-group_keyn>::<group_variable_name>=<value>

S #<GFF-source_key1>::<source_variable_name>=<value>
...

...
...<GFF-source_keyn>::<source_variable_name>=<value>

Figure 4.2: Custom Files general structure, pointing on block separator comments usage for delim-
iting variable definition into four groups: layout, GFF-elements, GFF-groups and GFF-sources.

The blocks corresponding separators are:‘# L #’ for Layout,‘# F #’ for GFF-elements,‘# G #’
for Groups, and‘# S #’ for Sources. You can write extra text before the second‘#’ and use those
headers also as comments, but you must remember to maintain the first five characters as we have
defined. Figure 4.2 shows general structure for Custom Filesand block separator comments usage.
Block ordering is not relevant but variables defined on each block can not be placed on the others.

4.2.2 Using Regular Expressions in Custom Files

Main gff2ps scripting code is written in GNU awk, you may refer to awk reference manuals1;2
to know more about how this language manages with regular expressions, but we should try to
summarize the main features. A Regular Expression is a notation used to specify and match strings.
You can get more info about regular expressions in Friedl’s book3. Table 4.1 shows the main players
on regular expressions and how you can combine them into higher constructs for parsing your
feature space.

When working on GFF-files containing a large number of GFF-features, Groups or Sources,
1 Aho, A.; Kernighan, B.W.; Weinberger, P.J. “The AWK Programming Language” Addison-Wesley Publishing Co.;

first edition (1988).
2Dougherty, D.; Robbins, A. “sed & awk” Ed. O’reilly & Associates, Inc; Second edition (1997).
3Friedl, J.E.F.“Mastering Regular Expressions” Ed. O’reilly & Associates, Inc; first edition (1997).

29

� Regular expression metacharacters are:n ˆ $. [] j () � + ?� Basic regular expression is one of the following:

a nonmetacharacter, such A, that matches itself.

an escape sequencethat matches a special symbol (nt matches a tab).

a quoted metacharacter, asn�, that matches the metacharacter literally.

ˆ matches the beginning of a string.

$ matches the end of a string.

. matches any single character.

a character class, [ABC] matches any of the characters A, B, or C. Character
classes may include abbreviations, [a-z] matches only lower case letters.

a complemented character class,[ˆ0-9] matches any character except a digit.� Operators that combine regular expressions into larger ones:

alternation, ajb matches A or B.

concatenation, AB matches A immediately followed by B.

closure, A� matches zero or more A’s.

positive closure, A+ matches one or more A’s.

zero or none, A? matches null string or A.

parentheses,(r) matches same string as r does.

Table 4.1: Describing Regular Expressions (excerpt from note 1).

regular expressions allow you not to spend your time definingvariables for each one (either you
will be interested on displaying each one in a different way). You can be interested in changing
one variable value for few, many or all elements and this can be done faster and easily with regular
expressions. You can not use them on the Layout Block, because variables defined within this block
are not linked to any feature; in the three other blocks you must define a feature from GFF-files that
is going to be drawn as we are setting its variables values. Then we can apply regular expressions
when assigning one value to a variable for multiple featuresat once, an example of string pattern
matching using regular expressions applied togff2ps is on table 4.2.

How can we define regular expressions ongff2ps ? We must quote regular expression be-
tween two slashes (‘/’) in<plot_element> field of variable definition on custom file, as it is de-
scribed on the following pattern:

/regular_expression /::<variable_name>=<value>
Where‘regular_expression’ could be any regular expression construct in compliance with ta-

ble 4.1 rules. The only exception to this general definition is made for the ‘any string’ matching
expression, with which you can select all plot elements, that can be written as‘�’ in place of‘/.�/’,
so you can place on your custom file a line like this:�::<variable_name>=<value>

30

Defining a words list:
ds,
odon, est, 50est, 30est, spli
esite, 50spli
esite, 30spli
esite,start, stop_
odon, utr, 50utr, 30utr, group:3, file:gff
The following table shows matching results for left regularexpressions over previous words list:

Expression Matches Examples
 the nonmetacharacter

ds,
odon, spli
esite,50spli
esite, 30spli
esite, stop_
odonn: escape sequence or literal character: group:3, file:gff
ˆ

 at the beginning of string
ds,
odonutr$ utr at the end of string utr, 50utr, 30utr
. any character all the words list

ˆ...$ any string containing exactly three characters
ds, est, utr
ˆ(50)?u any string starting with50u or u utr, 50utr
ˆ50[ues] any string starting with50 followed byu or e or s 50est, 50spli
esite, 50utr

Table 4.2: Working with Regular Expressions, some examples.

that is equivalent to:

/.�/::<variable_name>=<value>
You may be interested also in changing any attributes for those features that do not match your

regular expressions.gff2ps can deal with that, but it’s only allowed with the regular expression
variable definition general format. You can deny the regularexpression using ‘!’ (exclamation mark)
as it’s drafted here:

!/regular_expression /::<variable_name>=<value>
so, you can modify the variable for all the features that are not accomplishing such regular

expression. Figure 4.3 shows many examples on how to apply regular expressions ingff2ps
custom files.

F
exon::shape=arrow # exon shape as arrow.
/ˆ5.�/::shape=box # all features starting with‘5’ are shown with a box.�::feature_color=lightred # fill color for ‘ALL’ features is now ‘lightred’.
G
/(̇QT)?s$/::label=QTgp # define‘QTgp’ as label for any group ending on‘.QTs’ or ‘.s’.
/CLONE[AB].�/::show_group=off # Any group matching‘CLONEA’ or ‘CLONEB’ is not shown.
S
!/.�blast.�/::vert_align=top # ‘ALL’ sourcesNOT matching‘.�blast.�’ vertical align

for baseline are set to top.

Figure 4.3: Using regular expressions ongff2ps custom files

31

4.3 Command Line Options

gff2ps -v -n -s <param> GFF_file
gff2ps -v -n -s <param> -- GFF_file
gff2ps -vn -s <param> GFF_file
gff2ps -vn -s <param> GFF_file
gff2ps -s <param> -n -v GFF_file

Figure 4.4: Reading options from command-line, all the above command lines are equivalent.‘v’
and‘n’ are options without parameter,‘s’ needs a parameter.

All options must be passed before GFF input-files. Option string is read from left to right and,
as in Unix, you can split together options that does not need parameters, becausegff2ps checks
options with ‘getopts ’ —see figure 4.4—. Note that there is a blank space between option and
parameter.

A double hyphen (‘--’) notifies shell-script ‘getopts’ function that there are no options left —
second line on figure 4.4—. Although it is optional, we recommend its use for preserving clarity
and showing you where option definition finishes and input files starts. Also, if you switch on any
command-line option that needs a parameter, with double hyphen you can detect that you have
forgotten its parameter instead of getting the first filenameas parameter; such error is more difficult
to parse because you are providing that filename but you do notget expected results for it, and that
is caused by a wrong option definition, not due to input files.

A list of available command-line options can be found in table B. The main utility of command-
line options is to modify some general layout variables for aplot without having to edit the Custom
Files again, but there are seven options that are not represented by a Custom-File Variable:‘h’ and
‘H’ were explained on section 3.2.2, page 14;‘v’ and ‘V’ were defined on section 3.2.1, page 13;
‘d’,‘D’ and ‘C’, that were described on section 4.2, page 27. Here, in this section we are going to
show the Custom File Variable equivalents enclosed within abrackets for the rest of Command-line
Options, so you can have an idea of what can be modified easily for one specific plot. Remember
that Layout Variables are defined by defining a Value to a Variable Name —see 4.1—.

-a show_copyright_line =on

This option disables the tiny copyright line at the bottom ofyour plots.

-s <page_size> page_size =<page_size><page_size> is a page label from table C.7. By default is defined as‘a4’.

-p page_orientation =Portrait

Switches page orientation to Portrait; if not passed, program first looks at custom files for
‘page_orientation’ definition and if that fails uses inner default value‘Landscape’.

-G <color> foreground_color =<color>
You can change foreground color —text, outlines and tickmarck rules are drawn with that
color—.<color> names are defined on table C.6, default value is‘FGcolor’ (black).

32

-g <color> background_color =<color>
This sets background color for pages —defines fill color for paper sheet—.<color> names
are defined on table C.6, default value is‘BGcolor’ (white).

-P <#> page_number =<#><#> can be any integer value greater or equal than 1, which is the default value. Setting any
other number forces program to split into given page number the input sequence length.

-S <#> zoom =#..*

This option allows you to define starting nucleotide different to sequence first position (by
default ‘0’). If ‘-E’ is not given, then you get a zoom from<#> to last sequence position.

-E <#> zoom =*..#

Here you can define last nucleotide to be shown on plot (by default is last position from given
sequence input-files). If ‘-S’ is not given then you get a plot zoom from first sequence position
to<#>.

NOTE: Giving both command-line options‘-S <#>’ and‘-E <#>’ you con obtain same
result as custom-file variable‘zoom=#..#’.

-B <#> blocks_x_page =<#><#> can be any integer value greater or equal than 1, which is the default value. Providing
this option you can visualize more than one block per page. Remember that each block
contains three areas (forward, reverse and no-strand), within source tracks are displayed.
This feature allows you to divide total nucleotides shown per page on ‘<#>’ blocks —useful
when working with large page formats (A3 to A0)—.

-N <#> nucleotides_x_line =<#><#> is the number of nucleotides you want to visualize within a block. Default is ‘0’ that is
to obtain sequence length from input-files, and use it to fit inthe page by blocks space.

NOTE: Page number and blocks per page are re-calculated, also whether you provide them
as a variable or as an option, if you pass a nucleotides per line value, to the block and page
number needed to view given nucleotides per lines value within a block.

NOTE: See variable description for‘nucleotides_x_line’ on page 18, to see howgff2ps
calculates nucleotides per line when default value‘0’ is given.

-b show_blocks_top-bottom =2

If this option is enabled, then block offset is taken from left to right, increasing the nucleotides
shown from left to right and, in case of multiple blocks per page, from top to bottom once we
have reached last page. This option is useful when you want tosplice all the pages in a mini-
poster, and you have more than one block, because block nucleotides are shown correlative
for all the blocks. If not given, last nucleotide position onprevious block is, by default, the
first on next block within a page.

-L header_style =none

Disables header area, so you do not have title, subtitle, page numbering, also date and time
stamping, and room left can be exploited as drawing area for blocks.

33

-T <"free-text_string"> title =free-text_string

While in variable definition you do not need to quote<free-text_string>, you must do when
passing this string in command-line due to shell requirements. String given is placed as plot
title. Default value is the name of the GFF input-files.

-t <"free-text_string"> subtitle =free-text_string

Quotation is explained above. Given string is taken as a plotsubtitle. By default there is no
subtitle.

-l show_page_numbers =off

Disables page numbering that is shown by default in top rightcorner of header.

-O show_date =off

Disables date stamp shown by default in right margin of header.

-o show_time =off

Here you can disable time stamping in header right margin.

-M <#> major_tickmarks_num =<#>
Number of major tickmarks shown per line, it takes nucleotides per lines and divides it by the
given parameter.

-K <#> major_tickmarks_nucleotides =<#>
Same as above, but passing a fixed nucleotides length betweenmajor tickmarks that is used
when‘-M’ is defined as ‘-1’ (default value).

-m <#> minor_tickmarks_num =<#>
Number of minor tickmarks shown per line, it takes nucleotides length between two major
tickmarks and divides it by the given parameter.

-k <#> minor_tickmarks_nucleotides =<#>
You can force a fixed nucleotide length from minor tickmark tonext one, using this option
and leaving default value for‘-m’ (that is also ‘-1’).

-w or -f strand_show_forward =off

Switch off plotting the forward strand block area for all theblocks and pages. Useful when
you are interested only in reverse or no-strand features.

-c or -r strand_show_reverse =off

Switch off plotting of reverse strand block area for every block and page. Useful when you
are only interested in forward or no-strand features.

NOTE: ‘-w’ and ‘-c’ are used as abbreviations of WATSON and CRICK, respectively, as is
defined in some genomic analysis programs.

-i strand_show_independent =off

Switch off plotting for strand independent features area, because you only have features on
forward and reverse, and/or you are interested to not have the no-strand area.

34

NOTE: At least one of the three strand related areas must be presentin your plot. Any
combination of two areas is allowed, and their ordering is always preserved —top area for
forward-strand, middle area for no-strand and bottom area for reverse— even though you
have enabled display for any pair of them or all three.

-0 <color> frame0_color =<color>
Changing color which fills the frame 0 halves of GFF-elementswhen variable‘fill_shape_mode’
is set as ‘frame-remainder’. Color names are available at table C.6.

-1 <color> frame1_color =<color>
Changing the fill color for frame 1 halves of a GFF-element when variable‘fill_shape_mode’
is set as ‘frame-remainder’. Color names are available at table C.6.

-2 <color> frame2_color =<color>
Fill color for frame 2 is redefined as given color name when variable ‘fill_shape_mode’ is
set as ‘frame-remainder’. Color names are available at table C.6.

-3 <color> frame_unknown_color =<color>
Same as above descriptions, but modifying color assigned tounknown frame GFF-elements
(when frame field on GFF-records has a ‘.’ or an invalid frame —different from ‘0’, ‘1’ or
‘2’—).

-n show_positions =on

Switch on showing start and end nucleotide coordinates for all displayed features on plot.

35

In this section we want to summarize some of the DDBJ/EMBL/GenBank feature keys used in
genomic analysis, and include also a brief description of their meaning. For further information see
the DDBJ/EMBL/GenBank feature table definition at:

http://www.ebi.ac.uk/embl/Documentation/FT_definitions/feature_table.html

GENE FEATURES

gene : DNA region that spans the information for a protein (alternative splice forms are also covered).

prim_transcript : primary transcript (unprocessed RNA); includes 5’ clippedregion (5’clip), 5’ untrans-
lated region (5’UTR), coding sequences (CDS, exon), intervening sequences (intron), 3’ untranslated
region (3’UTR), and 3’ clipped region (3’clip).

precursor_RNA : any RNA species that is not yet the mature RNA product; may include any of the above
listed elements.

mRNA : messenger RNA; includes 5’untranslated region (5’UTR), coding sequences (CDS, exon) and
3’untranslated region (3’UTR).

tRNA : mature transfer RNA, mediates the translation of a nucleic acid sequence into an amino acid se-
quence.

rRNA : mature ribosomal RNA ; the RNA component of the ribosome which assembles amino acids into
proteins.

snRNA : small nuclear RNA; any one of many small RNA species confined to the nucleus; several of the
snRNAs are involved in splicing or other RNA processing reactions.

intron : a segment of DNA that is transcribed, but removed from withinthe transcript by splicing together
the sequences (exons) on either side of it .

exon : region of genome that codes for portion of spliced mRNA; may contain 5’UTR, all CDSs, and 3’
UTR.

CDS : only coding sequence; sequence of nucleotides of the exon that is protein coding (location includes
stop codon).

terminator : sequence of DNA located either at the end of the transcript that causes RNA polymerase to
terminate transcription.

5’UTR : region at the 5’ end of a mature transcript (preceding the initiation codon) that is not translated into
a protein.

5’clip : 5’-most region of a precursor transcript that is clipped offduring processing.

3’UTR : region at the 3’ end of a mature transcript (following the stop codon) that is not translated into a
protein.

3’clip : 3’-most region of a precursor transcript that is clipped offduring processing.

SIGNAL FEATURES

rep_origin : origin of replication; starting site for duplication of nucleic acid to give two identical copies.

enhancer : a cis-acting sequence that increases the utilization of (some) eukaryotic promoters, and can
function in either orientation and in any location (upstream or downstream) relative to the promoter.

36

promoter : region on a DNA molecule involved in RNA polymerase binding to initiate transcription.

TATA_signal or TATA_box : Goldberg-Hogness box; a conserved AT-rich septamer found about 25 bp
before the start point of each eukaryotic RNA polymerase II transcript unit which may be involved in
positioning the enzyme for correct initiation. Consensus ‘TATA(A or T)A(A or T)’.

polyA_site : site on an RNA transcript to which adenine residues by post-transcriptional polyadenylation
will be added.

polyA_signal : recognition region necessary for endonuclease cleavage ofan RNA transcript that is fol-
lowed by polyadenylation. Consensus ‘AATAAA’.

RBS : ribosome binding site.

-10_signal : Pribnow box; a conserved region about 10 bp upstream of he start point of bacterial transcrip-
tion units which may be involved in binding RNA polymerase. Consensus ‘TAtAaT’.

-35_signal : a conserved hexamer about 35 bp upstream of the start point ofbacterial transcription units.
Consensus ‘TTGACa’ or ‘TGTTGACA’.

REPEAT FEATURES

repeat_region : region of genome containing repeating units.

repeat_unit : single repeat element.

satellite : many tandem repeats (identical or related) of a short basic repeating unit; many have a base
composition or other property different from the genome average that allows them to be separated
from the bulk (main band) genomic DNA.

LTR : long terminal repeat, a sequence directly repeated at both ends of a defined sequence.

STS : Sequence Tagged Site. Short, single-copy DNA sequence hat characterizes a mapping landmark on
the genome and can be detected by PCR. A region of the genome can be mapped by determining the
order of a series of STSs.

Here are some extra non-standard features —not listed in DDBJ/EMBL/GenBank tables— that may be
useful working on genomic analysis:

EXTRA GENE FEATURES

locus : "gene" in Mendel’s sense.

orf : Open reading frame, sequence region between an Start and Stop signals.

transcript : A transcribed sequence region.

TSS : Transcription start site.

Start or start_codon : ‘ATG’ coding for initial methionine on nucleotide to protein sequence translation.

3’splice_site or splice_donor or splice3’ : Intron start signal. Consensus ‘GT’.

5’splice_site or splice_acceptor or splice5’ : Intron end signal. Consensus ‘AG’.

EXTRA SIGNAL FEATURES

CpG : CpG islands.

Regulatory_Reg : Regulatory regions.

SNP : Single Nucleotide Polymorphism.

TFBP : Regulatory protein region.

37

This Appendix summarizes all the Command-line Options and those Variables which are available
to improve your plots from Custom Files. When possible, all values for each option or variable are
listed —including a short comment on it—; if not, you can find the reference for proper table on
last Appendix where you can obtain those values.� COMMAND -LINE GFF2PS GENERAL FORMAT.

Brackets are enclosing optional command-line elements, also output redirections are not mandatory
—see figure 3.2 on section 3.2 for a basic idea— on the following Unix command-lines:

[cshell]$ (gff2ps [-option [parameter] ... -option [parameter]] [--] n
gff_file1 [... gff_filen] > output.ps) >& output.rpt

[bshell]$ gff2ps [-option [parameter] ... -option [parameter]] [--] n
gff_file1 [... gff_filen] > output.ps 2>output.rpt

� CUSTOM-FILE VARIABLES GENERAL FORMAT.

General format for Custom File Variables is explained in section 4.1.

For Layout features: <variable_name>=<value>
For GFF-element, Group and Source features:<plot_element>::<variable_name>=<value>

See section 4.3 for extra information on Command-line options, and section 4.2 to know more about
variables in Custom Files.

38

B.2 Layout Features
PAGE L AYOUT

page_size a4 Available values are shown in table C on ‘Page Format’ column.

page_bbox auto,0,0 Do not edit unless you want to define a new page size (overrides‘page_size’.

page_orientation Landscape ‘Landscape’ or ‘Portrait’

margin_left 1cm)

You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.
margin_right 1cm
margin_upper 1cm
margin_lower 1cm

foreground_color FGcolor ‘FGcolor’,‘BGcolor’, or any of the color names defined on table C.6.

background_color BGcolor ‘FGcolor’,‘BGcolor’, or any of the color names defined on table C.6.

page_number 1 Any positive integer value greater or equal than 1.

zoom �..� ‘�..�’, ‘�..end’, ‘start..�’, ‘start..end’. ‘�’ means read nucleotide position from input. ‘Start’ and ‘end’ are nucleotide positions.

blocks_x_page 1 Any positive integer value, although more than five blocks inan A4 page looks crowded.

nucleotides_x_line 0 Default value ‘0’ forces to calculate the sequence length from data. Any integer value means show those nucleotide number per page.

block_style default ‘default’ —no framed blocks— or‘boxed’ —put a frame around blocks—.

default_block_spacing_width 0.25cm You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

show_blocks_top-bottom 1 Boolean switch:‘1’ means show blocks Top-to-Bottom,‘0’ means Left-to-Right.

T ITLE AREA

header_style default ‘none’ —does not plot header area—,‘default’ —no framed header—,‘boxed’ —put a frame around header area—. Header elements
are title, sub-title, page-number, date and time.

title default ‘none’ —does not print title—,‘default’ —prints first input filename—,‘free-text_string’ —a title string given by user—.

subtitle default ‘none’ —does not print sub-title—,‘default’ —as‘none’—, ‘free-text_string’ —a sub-title string given by user—.

show_page_numbers on Boolean switch for displaying or not page numbering.

show_date on Boolean switch for displaying or not system date.

show_time on Boolean switch for displaying or not system time.

T ICK M ARKS

major_tickmarks_num 10 Any positive integer number.

major_tickmarks_nucleotides -1 Nucleotides between two neighbor major tickmarks,‘-1’ force program to use‘major_tickmarks_num’ on ‘nucleotides_x_line’

minor_tickmarks_num 10 Any positive integer number.

minor_tickmarks_nucleotides -1 Nucleotides between two neighbor minor tickmarks,‘-1’ force program to use‘minor_tickmarks_num’ on ‘nucleotides_x_line’

show_grid on Boolean switch for plotting vertical dotted grid:‘1’ enables,‘0’ disables.

show_inner_scale both ‘none’ disables any inner nucleotide ruler,‘both’ shows top and bottom rulers,‘top’ disables bottom and‘bottom’ disables top ruler.

show_outer_scale both ‘none’ disables any outer nucleotide ruler,‘both’ shows top and bottom rulers,‘top’ disables bottom and‘bottom’ disables top ruler.

default_scale_width 0.25cm You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

default_scale_spacing_width 1 Times that is multiplieddefault_scale_width to get the space between nucleotide rulers and source tracks.

nucleotide_scale default To set the units to show in the nucleotide rulers,‘default’ or ‘b’ for nucleotide number,‘kb’ for kilobases and‘mb’ for megabases.

39

BLOCK L AYOUT

strand_show_forward on Boolean switch for displaying forward-strand area:‘on’ enables,‘off’ disables.

strand_show_reverse on Boolean switch for displaying reverse-strand area:‘on’ enables,‘off’ disables.

strand_show_independent on Boolean switch for displaying no-strand area:‘on’ enables,‘off’ disables.

show_left_source_label true Boolean switch, shows source labels at left side:‘true’ enables,‘false’ disables.

left_source_label_width 2cm Left source labels width: You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

show_right_source_label false Boolean switch, shows source labels at right side:‘true’ enables,‘false’ disables.

right_source_label_width 2cm Right source labels width: You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

sort_tracks_by_sequence on Boolean switch:‘on’ to sort tracks by sequence names (comparing sources),‘off’ to sort by source names (comparing sequences).

default_track_width 1cm Default source tracks ‘vertical’ width: You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

default_track_spacing_width 0.25cm Default source tracks spacer ‘vertical’ width: You can use‘#cm’, ‘#in’, ‘#pt’. ‘#’ means any real number.

GENERAL DEFINITIONS FOR GROUPS AND GFF-ELEMENTS

frame_unknown_color orange)

Any of the color names defined on table C.6.
frame0_color blue
frame1_color red
frame2_color green

group_label_scale 1 Increasing or reducing group labels size by‘factor’.

position_label_scale 1 Increasing or reducing coords labels size by‘factor’.

show_positions false ‘true’ or ‘false’. Shows nucleotide start-end positions —in forward coordinates— for all elements on plot.

min_group_separation 10 Number of nucleotides from 0 ton that sets minimum nucleotide distance among two groups to avoid overlapping.

B.3 GFF-element Features

GFF-ELEMENT FEATURES

feature_color default ‘default’, 1_color)‘color’, 2_color)‘color..color’, 3_color)‘color..color..color’. Where each color name comes from table C.6.

feature_stroke_color default ‘default’ for foreground color or any color name from table C.6.

shape box See table C.1 for available values.

fill_shape_mode default See table C.4 for available values.

fill_vector_mode default See table C.5 for available values.

vert_align default Available values are only‘default’/‘center’, or ‘mirror’(from table C.2).

layer 0 first sorting for feature lines is made on FT_PROP["layer"]

label ++default++ (Not defined yet)‘++none++’ —does not display element label—,‘++default++’ —shows GFF-feature value—,‘ "user-def" ’ —free-text user defined label—.

show_feature on Boolean switch to avoid visualizing any feature:‘on’ shows feature,‘off’ does not show feature.

show_feature_positions off Boolean switch to show elements start-end nucleotide positions.

40

B.4 Group Features
GROUP FEATURES

feature_color default ‘default’, 1_color)‘color’, 2_color)‘color..color’, 3_color)‘color..color..color’. Where each color name comes from table C.6.

feature_stroke_color default ‘default’ for foreground color or any color name from table C.6.

group_color default ‘default’, 1_color)‘color’, 2_color)‘color..color’, 3_color)‘color..color..color’. Where each color name comes from table C.6.

group_shape none See table C.1 for available values.

fill_shape_mode default See table C.4 for available values.

fill_vector_mode default See table C.5 for available values.

group_line default See table C.3 for available values.

group_line_color default Any of the color names defined on table C.6.

label ++default++ ‘++none++’ —does not display group label—,‘++default++’ —shows group value—,‘ "user-def" ’ —free-text user defined label—.

vert_align default Available values are‘default’/‘center’, or ‘mirror’(from table C.2).

show_group on Boolean switch to avoid visualizing any group:‘on’ shows group,‘off’ does not show group.

show_group_positions off Boolean switch to show, for all elements on that group, the start-end nucleotide positions.

B.5 Source Features
SOURCE FEATURES

feature_color default ‘default’, 1_color)‘color’, 2_color)‘color..color’, 3_color)‘color..color..color’. Where each color name comes from table C.6.

feature_stroke_color default ‘default’ for foreground color or any color name from table C.6.

group_color default ‘default’, 1_color)‘color’, 2_color)‘color..color’, 3_color)‘color..color..color’. Where each color name comes from table C.6.

left_label ++default++ ‘++none++’ —does not display source label—,‘++default++’ —shows source or sequence name—,‘++source++’ —shows source
name—,‘++sequence++’ —shows sequence name—,‘++both++’ —source & sequence names—,‘++info++’ —as previous plus
grouping and strand—,‘ "user-def" ’ —free-text user defined label—.

right_label ++default++

o

show_left_label on

o

Boolean switch to show or not the left/right track labels area.
show_right_label off

source_label_scale 1 Increasing or reducing source labels size by‘factor’.

source_style default ‘default’ —no framed source-track— or‘boxed’ —put a frame around source-track—.

source_line default See upper panel from table C.3 for available values.

source_line_color red Any of the color names defined on table C.6.

vert_align default See table C.2 for available values.

range default Defining range of lower-upper source-scores:‘none’ —all scores are set to ‘1’—,‘default’ —score range got from input files—,‘#..#’
—forcing range to defined values—.

track_scale 1 Any positive real number, this variable allows you to resizeone or more source-tracks.

track_spacing_scale 1 Any positive real number, this variable allows you to resizeone or more source-track spacers.

keep_feature_label_space on ‘on’ reserves half of the source track width for labels,‘off’ forces the features to be drawn fitting the full source track width.

unfold_grouped_ungrouped off Boolean switch to split grouped elements from ungrouped:‘on’ grouped and ungrouped elements shown in two tracks,‘off’ all grouped
and ungrouped elements fitting only one track.

unfold_grouped_line on Boolean switch to split overlapping grouped elements in several tracks:‘on’ split groups,‘off’ all grouped elements fitting only one track.

unfold_ungrouped_line on Boolean switch to split tracks for overlapping ungrouped elements:‘on’ split ungrouped elem.,‘off’ all ungrouped elem. to one track.

show_source_positions off Boolean switch to show, for all elements on that source, the start-end nucleotide positions.

41

B.1 SHELL COMMAND -LINE OPTIONS FOR GFF2PS.

-h Shows command-line help.
-H <option> Shows only help for the especified option.

-V Verbose mode, a full report is sent to standard error
(default only sends Warnings).

-v Quiet mode: Disable warnings, no messages sent to standard error.
-d Write (or rewrite if exists) default customfile (.gff2psrc).

-D <default_cf> Create a new default customfile with the given filename.
-C <c_filename> Load given custom file and append to default custom file.

-s <page_size> Useful to modify the page size (default is a4).
-p Switches page orientation to Portrait (default is Landscape).

-G <color> Sets color for FOREGROUND (default is black).
-g <color> Sets color for BACKGROUND (default is white).

-P <#> Sets how many pages are needed to split your output (default is one).
-S <#> Zoom first nucleotide (default is sequence origin).
-E <#> Zoom last nucleotide (default is sequence length).
-B <#> Sets blocks per page (default is one).
-N <#> Sets nucleotides per line (default is the largest sequence position

from input gff-files).
-b Blocks from left to right and from top to bottom (default is top to bottom first).

-L Switch off Header (Title area).
-T <quoted_string> Defining title (default is input gff filename).
-t <quoted_string> Defining subtitle (default is none).

-l Does not show page numbering.
-O Does not show date.
-o Does not show time.

-M <#> Number of major tickmarks per line (default 10).
-K <#> Major tickmarks scale in nucleotides, default is nucleotide length

for lines divided by major tickmarks number (see option-M).
-m <#> Number of minor tickmarks between major tickmarks (default10).
-k <#> Minor tickmarks scale in nucleotides default is major tickmarks size

divided by minor tickmarks number (see option-m).

-w or -f Switch off displaying forward-strand (Watson) elements.
-c or -r Switch off displaying reverse-strand (Crick) elements.

-i Switch off displaying strand-independent elements.
-0 <color> Sets color for frame ‘0’ (default is blue).

-1 <color> Sets color for frame ‘1’ (default is red).
-2 <color> Sets color for frame ‘2’ (default is green).
-3 <color> Sets color for frame ‘.’ (default is orange).

-n Switch off labels for element positions.
-a Disables copyright line printing.<#> An integer value.<quoted_string> A free text string between double quotes (‘"’).<page_size> See available values on Appendix C.7 table.<color> A color name chosen from table on Appendix C.6.<default_cf> New name for Default Custom File, see Section 4.2.<c_filename> Name for user-defined Custom File, see also Section 4.2.

42

Table C.1: Available shape names.

none line weighted_line box group_tag_box

asterisk star circle half_circle gap

diamond down_triangle
half_diamond �� up_triangle sand_clock

left_triangle half_left_triangle half_right_triangle r ight_triangle

left_arrow_head half_left_arrow_head
half_arrow_head �� half_right_arrow_head

arrow_head �� right_arrow_head

left_arrow_end half_left_arrow_end
half_arrow_end �� half_right_arrow_end

arrow_end �� right_arrow_end

left_single � left_arrow half_left_arrow
half_arrow �� half_right_arrow

single � right_single �� arrow � right_arrow

one

Each shape is defined by<start> and<end> nucleotide positions,‘default’ track vertical alignment was used to obtain this figure (see
figure C.1). Its ‘vertical’ width is defined by<score>, except‘none’, ‘default’ and‘line’, which have no width. Red line represents in
this table source baseline, and all shapes are centered on it. ‘�’ means that names are equivalent (synonymous).‘default’ is set in dif-
ferent ways for groups and GFF-features, while in groups means same as‘none’, for GFF-features is defined as‘box’. For all the shapes
‘green’ fill color was defined in the variable ‘feature_color ’, while ‘black’ color was defined in the variable ‘feature_stroke_color ’.

43

Table C.2: Available baseline alignment (Forward and No-Strand elements).

VARIABLE VALUE SOURCES GFF-ELEMENTS & GROUPS

reverse � top Source-Track

default � center Source-Track

mirror Source-Track

baseline � bottom Source-Track

Figure C.1: Showing track vertical alignment for sources.

EXAMPLE: Feature Shapes and its Vertical Alignment
1999/12/17

17:40:38
Page 1 of 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 5900

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 5900

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 5900

TOP

ONE

100
2000

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

TWO

2100
4000

2100
2200

2300
2400

2500
2600

2700
2800

2900
3000

3100
3200

3300
3400

3500
3600

3700
3800

3900
4000

THREE

4100
5800

4100
4200

4300
4400

4500
4600

4700
4800

4900
5000

5100
5200

5300
5400

5500
5600

5700
5800

CENTER

ONE

100
2000

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

TWO

2100
4000

2100
2200

2300
2400

2500
2600

2700
2800

2900
3000

3100
3200

3300
3400

3500
3600

3700
3800

3900
4000

THREE

4100
5800

4100
4200

4300
4400

4500
4600

4700
4800

4900
5000

5100
5200

5300
5400

5500
5600

5700
5800

MIRROR

ONE

100
2000

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

TWO

2100
4000

2100
2200

2300
2400

2500
2600

2700
2800

2900
3000

3100
3200

3300
3400

3500
3600

3700
3800

3900
4000

THREE

4100
5800

4100
4200

4300
4400

4500
4600

4700
4800

4900
5000

5100
5200

5300
5400

5500
5600

5700
5800

BOTTOM

ONE

10
0

20
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

TWO

21
00

40
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

THREE

41
00

58
00

41
00

42
00

43
00

44
00

45
00

46
00

47
00

48
00

49
00

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

BOTTOM

ONE

100
2000

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

TWO

2100
4000

2100
2200

2300
2400

2500
2600

2700
2800

2900
3000

3100
3200

3300
3400

3500
3600

3700
3800

3900
4000

THREE

4100
5800

4100
4200

4300
4400

4500
4600

4700
4800

4900
5000

5100
5200

5300
5400

5500
5600

5700
5800

MIRROR

ONE

10
0

20
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

TWO

21
00

40
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

THREE

41
00

58
00

41
00

42
00

43
00

44
00

45
00

46
00

47
00

48
00

49
00

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

CENTER

ONE

10
0

20
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

TWO

21
00

40
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

THREE

41
00

58
00

41
00

42
00

43
00

44
00

45
00

46
00

47
00

48
00

49
00

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

TOP

ONE

10
0

20
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

TWO

21
00

40
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

THREE

41
00

58
00

41
00

42
00

43
00

44
00

45
00

46
00

47
00

48
00

49
00

50
00

51
00

52
00

53
00

54
00

55
00

56
00

57
00

58
00

gff2ps mirrors reverse strand source order from forward sources. The following plot shows how this mirroring affects source vertical
alignment. You can also see nucleotide start and end positions for each feature. You can get more examples from:

http://www1.imim.es/ �jabril/GFFTOOLS/GFF2PS-Snapshots.html

44

Table C.3: Available line-types.

VARIABLE VALUE OUTPUT

none

default � line

dotted � dotted_line

long_dotted

short_dashed

long_dashed

Group features extra line-types

bracket

arrow � right_arrow

left_arrow

Table C.4: Available fill-shape modes

SHAPE-MODE VARIABLE VALUES

fill_shape_mode feature_color OUTPUT

none ——

default ——

1_color violet

2_color yellow..red

frame-remainder ——

rainbow ——

DEFAULT COLORS

FOR FRAME-REMAINDER MODE.

frame0 remainder0

frame1 remainder2

frame2 remainder1

no-frame no-remainder

Those values can be modified redefin-
ing following variables: ‘frame0_color’,
‘frame1_color’, ‘frame2_color’ and
‘frame_unknown_color’.

Table C.5: Available fill-vector modes

VECTOR-MODE VARIABLE VALUES

fill_vector_mode feature_color OUTPUT

none ——

default ——

1_color violet

2_color yellow..red

3_color red..green..blue

rainbow ——

Minimum
Score

Maximum
Score

45

Table C.6:gff2ps CMYK color definition table and Color Names.

black 0.00 0.00 0.00 1.00

verydarkgrey 0.00 0.00 0.00 0.80

darkgrey 0.00 0.00 0.00 0.60

grey 0.00 0.00 0.00 0.40

lightgrey 0.00 0.00 0.00 0.20

verylightgrey 0.00 0.00 0.00 0.10

white 0.00 0.00 0.00 0.00

verydarkmagenta 0.00 1.00 0.00 0.30

darkmagenta 0.00 0.80 0.00 0.05

magenta 0.00 0.60 0.00 0.00

lightmagenta 0.00 0.40 0.00 0.00

verylightmagenta 0.00 0.20 0.00 0.00

verydarkviolet 0.45 0.85 0.00 0.00

darkviolet 0.30 0.65 0.00 0.00

violet 0.22 0.55 0.00 0.00

lightviolet 0.15 0.40 0.00 0.00

verylightviolet 0.10 0.20 0.00 0.00

verydarkblue 1.00 1.00 0.00 0.20

darkblue 0.90 0.90 0.00 0.00

blue 0.75 0.75 0.00 0.00

lightblue 0.50 0.50 0.00 0.00

verylightblue 0.30 0.30 0.00 0.00

verydarkskyblue 0.90 0.50 0.00 0.15

darkskyblue 0.75 0.45 0.00 0.00

skyblue 0.60 0.38 0.00 0.00

lightskyblue 0.45 0.25 0.00 0.00

verylightskyblue 0.30 0.15 0.00 0.00

verydarkcyan 1.00 0.00 0.00 0.10

darkcyan 0.80 0.00 0.00 0.00

cyan 0.60 0.00 0.00 0.00

lightcyan 0.40 0.00 0.00 0.00

verylightcyan 0.20 0.00 0.00 0.00

verydarkseagreen 0.75 0.00 0.45 0.00

darkseagreen 0.62 0.00 0.38 0.00

seagreen 0.50 0.00 0.30 0.00

lightseagreen 0.38 0.00 0.22 0.00

verylightseagreen 0.25 0.00 0.15 0.00

verydarkgreen 1.00 0.00 1.00 0.25

darkgreen 0.80 0.00 0.80 0.00

green 0.60 0.00 0.60 0.00

lightgreen 0.40 0.00 0.40 0.00

verylightgreen 0.20 0.00 0.20 0.00

verydarklimegreen 0.50 0.00 1.00 0.10

darklimegreen 0.40 0.00 0.95 0.00

limegreen 0.30 0.00 0.80 0.00

lightlimegreen 0.20 0.00 0.65 0.00

verylightlimegreen 0.10 0.00 0.50 0.00

verydarkyellow 0.00 0.00 1.00 0.25

darkyellow 0.00 0.00 1.00 0.10

yellow 0.00 0.00 1.00 0.00

lightyellow 0.00 0.00 0.50 0.00

verylightyellow 0.00 0.00 0.25 0.00

verydarkorange 0.00 0.50 0.80 0.10

darkorange 0.00 0.40 0.80 0.00

orange 0.00 0.30 0.80 0.00

lightorange 0.00 0.20 0.75 0.00

verylightorange 0.00 0.15 0.70 0.00

verydarkred 0.00 1.00 1.00 0.15

darkred 0.00 0.80 0.80 0.00

red 0.00 0.60 0.60 0.00

lightred 0.00 0.40 0.40 0.00

verylightred 0.00 0.20 0.20 0.00

verydarkbrown 0.35 0.85 1.00 0.40

darkbrown 0.30 0.70 1.00 0.35

brown 0.25 0.75 1.00 0.25

lightbrown 0.20 0.60 0.70 0.15

verylightbrown 0.15 0.45 0.55 0.00

46

Table C.7: Page Sizes defined ingff2ps.

PAGE PAGE SIZE
FORMAT (in points) (in cms) (in inches)

a0 2384 3370 84.1 118.9 33.1 46.8
a1 1684 2384 59.4 84.1 23.4 33.1
a2 1190 1684 42.0 59.4 16.5 23.4
a3 842 1190 29.7 42.0 11.7 16.5
a4 595 842 21.0 29.7 8.3 11.7
a5 420 595 14.8 21.0 5.8 8.3
a6 297 420 10.5 14.8 4.1 5.8
a7 210 297 7.4 10.5 2.9 4.1
a8 148 210 5.2 7.4 2.1 2.9
a9 105 148 3.7 5.2 1.5 2.1
a10 73 105 2.6 3.7 1.0 1.5

b0 2920 4127 103.0 145.6 40.6 57.3
b1 2064 2920 72.8 103.0 28.7 40.6
b2 1460 2064 51.5 72.8 20.3 28.7
b3 1032 1460 36.4 51.5 14.3 20.3
b4 729 1032 25.7 36.4 10.1 14.3
b5 516 729 18.2 25.7 7.2 10.1
b6 363 516 12.8 18.2 5.0 7.2
b7 258 363 9.1 12.8 3.6 5.0
b8 181 258 6.4 9.1 2.5 3.6
b9 127 181 4.5 6.4 1.8 2.5
b10 91 127 3.2 4.5 1.3 1.8

executive 540 720 19.0 25.4 7.5 10.0
folio 612 936 21.6 33.0 8.5 13.0
legal 612 1008 21.6 35.6 8.5 14.0
letter 612 792 21.6 27.9 8.5 11.0
quarto 610 780 21.5 27.5 8.5 10.8

statement 396 612 14.0 21.6 5.5 8.5

10x14 720 1008 25.4 35.6 10.0 14.0
ledger 1224 792 43.2 27.9 17.0 11.0
tabloid 792 1224 27.9 43.2 11.0 17.0

userdefined 595 2384 21.0 84.1 8.3 33.1

47

